資源描述:
《考研數(shù)學三考試大綱(5)》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫。
1、2011年全國碩士研究生入學統(tǒng)一考試數(shù)學考試大綱--數(shù)學三考試科目:微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計考試形式和試卷結(jié)構(gòu)一、試卷滿分及考試時間試卷滿分為150分,考試時間為180分鐘.二、答題方式答題方式為閉卷、筆試.三、試卷內(nèi)容結(jié)構(gòu)微積分 56%線性代數(shù) 22%概率論與數(shù)理統(tǒng)計22%四、試卷題型結(jié)構(gòu)試卷題型結(jié)構(gòu)為:單項選擇題選題8小題,每題4分,共32分填空題6小題,每題4分,共24分解答題(包括證明題)9小題,共94分微積分一、函數(shù)、極限、連續(xù)考試內(nèi)容函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函
2、數(shù)函數(shù)關(guān)系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限和右極限無窮小量和無窮大量的概念及其關(guān)系無窮小量的性質(zhì)及無窮小量的比較極限的四則運算極限存在的兩個準則:單調(diào)有界準則和夾逼準則兩個重要極限:函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)考試要求1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系.2.了解函數(shù)的有界性.單調(diào)性.周期性和奇偶性.3.理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.5.了解數(shù)列極限和函數(shù)極限(包括左極限與右極限)的概念.6.了解極限的性質(zhì)與極
3、限存在的兩個準則,掌握極限的四則運算法則,掌握利用兩個重要極限求極限的方法.7.理解無窮小的概念和基本性質(zhì).掌握無窮小量的比較方法.了解無窮大量的概念及其與無窮小量的關(guān)系.8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型.9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理.介值定理),并會應(yīng)用這些性質(zhì).二、一元函數(shù)微分學考試內(nèi)容導數(shù)和微分的概念導數(shù)的幾何意義和經(jīng)濟意義函數(shù)的可導性與連續(xù)性之間的關(guān)系平面曲線的切線與法線導數(shù)和微分的四則運算基本初等函數(shù)的導數(shù)復合函數(shù)、反函數(shù)和隱函數(shù)的微分法高階導數(shù)一階微分形式的不
4、變性微分中值定理洛必達(L'Hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小值考試要求1.理解導數(shù)的概念及可導性與連續(xù)性之間的關(guān)系,了解導數(shù)的幾何意義與經(jīng)濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程.2.掌握基本初等函數(shù)的導數(shù)公式.導數(shù)的四則運算法則及復合函數(shù)的求導法則,會求分段函數(shù)的導數(shù)會求反函數(shù)與隱函數(shù)的導數(shù).3.了解高階導數(shù)的概念,會求簡單函數(shù)的高階導數(shù).4.了解微分的概念,導數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會求函數(shù)的微分.5.理解羅爾(Rolle)定理.拉格朗日(Lagran
5、ge)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握這四個定理的簡單應(yīng)用.6.會用洛必達法則求極限.7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及其應(yīng)用.8.會用導數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導數(shù).當時,的圖形是凹的;當時,的圖形是凸的),會求函數(shù)圖形的拐點和漸近線.9.會描述簡單函數(shù)的圖形.三、一元函數(shù)積分學考試內(nèi)容原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理積分上限的函數(shù)及其導數(shù)牛頓一萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積
6、分法與分部積分法反常(廣義)積分定積分的應(yīng)用考試要求1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法和分部積分法.2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會求它的導數(shù),掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法.3.會利用定積分計算平面圖形的面積.旋轉(zhuǎn)體的體積和函數(shù)的平均值,會利用定積分求解簡單的經(jīng)濟應(yīng)用問題.4.了解反常積分的概念,會計算反常積分.四、多元函數(shù)微積分學考試內(nèi)容多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)多元函數(shù)偏導數(shù)的概念
7、與計算多元復合函數(shù)的求導法與隱函數(shù)求導法二階偏導數(shù)全微分多元函數(shù)的極值和條件極值、最大值和最小值二重積分的概念、基本性質(zhì)和計算無界區(qū)域上簡單的反常二重積分考試要求1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì).3.了解多元函數(shù)偏導數(shù)與全微分的概念,會求多元復合函數(shù)一階、二階偏導數(shù),會求全微分,會求多元隱函數(shù)的偏導數(shù).4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格