資源描述:
《數(shù)學三考研大綱參考(8)》由會員上傳分享,免費在線閱讀,更多相關內容在應用文檔-天天文庫。
1、考試科目:微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計考試形式和試卷結構一、試卷滿分及考試時間試卷滿分為150分,考試時間為180分鐘.二、答題方式答題方式為閉卷、筆試.三、試卷內容結構微積分 56%線性代數(shù) 22%概率論與數(shù)理統(tǒng)計22%四、試卷題型結構試卷題型結構為:單項選擇題選題8小題,每題4分,共32分填空題6小題,每題4分,共24分解答題(包括證明題)9小題,共94分微積分一、函數(shù)、極限、連續(xù)考試內容函數(shù)的概念及表示法函數(shù)的有界性、單調性、周期性和奇偶性復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質及其圖形初等函數(shù)函數(shù)關系的建立數(shù)列極限與函數(shù)極限的定義及其性質函數(shù)的左極限和右極限無窮小量
2、和無窮大量的概念及其關系無窮小量的性質及無窮小量的比較極限的四則運算極限存在的兩個準則:單調有界準則和夾逼準則兩個重要極限:函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質考試要求1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用問題的函數(shù)關系.2.了解函數(shù)的有界性.單調性.周期性和奇偶性.3.理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.4.掌握基本初等函數(shù)的性質及其圖形,了解初等函數(shù)的概念.5.了解數(shù)列極限和函數(shù)極限(包括左極限與右極限)的概念.6.了解極限的性質與極限存在的兩個準則,掌握極限的四則運算法則,掌握利用兩個重要極限求極限的方法.7.理解無窮小的概
3、念和基本性質.掌握無窮小量的比較方法.了解無窮大量的概念及其與無窮小量的關系.8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型.9.了解連續(xù)函數(shù)的性質和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(有界性、最大值和最小值定理.介值定理),并會應用這些性質.二、一元函數(shù)微分學考試內容導數(shù)和微分的概念導數(shù)的幾何意義和經(jīng)濟意義函數(shù)的可導性與連續(xù)性之間的關系平面曲線的切線與法線導數(shù)和微分的四則運算基本初等函數(shù)的導數(shù)復合函數(shù)、反函數(shù)和隱函數(shù)的微分法高階導數(shù)一階微分形式的不變性微分中值定理洛必達(L'Hospital)法則函數(shù)單調性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖
4、形的描繪函數(shù)的最大值與最小值考試要求1.理解導數(shù)的概念及可導性與連續(xù)性之間的關系,了解導數(shù)的幾何意義與經(jīng)濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程.2.掌握基本初等函數(shù)的導數(shù)公式.導數(shù)的四則運算法則及復合函數(shù)的求導法則,會求分段函數(shù)的導數(shù)會求反函數(shù)與隱函數(shù)的導數(shù).3.了解高階導數(shù)的概念,會求簡單函數(shù)的高階導數(shù).4.了解微分的概念,導數(shù)與微分之間的關系以及一階微分形式的不變性,會求函數(shù)的微分.5.理解羅爾(Rolle)定理.拉格朗日(Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握這四個定理的簡單應用.6.會用洛必達法則求極限.7.掌握函數(shù)單調性
5、的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及其應用.8.會用導數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內,設函數(shù)具有二階導數(shù).當時,的圖形是凹的;當時,的圖形是凸的),會求函數(shù)圖形的拐點和漸近線.9.會描述簡單函數(shù)的圖形.三、一元函數(shù)積分學考試內容原函數(shù)和不定積分的概念不定積分的基本性質基本積分公式定積分的概念和基本性質定積分中值定理積分上限的函數(shù)及其導數(shù)牛頓一萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法反常(廣義)積分定積分的應用考試要求1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握不定積分的換元積分法和
6、分部積分法.2.了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數(shù)并會求它的導數(shù),掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法.3.會利用定積分計算平面圖形的面積.旋轉體的體積和函數(shù)的平均值,會利用定積分求解簡單的經(jīng)濟應用問題.4.了解反常積分的概念,會計算反常積分.四、多元函數(shù)微積分學考試內容多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念有界閉區(qū)域上二元連續(xù)函數(shù)的性質多元函數(shù)偏導數(shù)的概念與計算多元復合函數(shù)的求導法與隱函數(shù)求導法二階偏導數(shù)全微分多元函數(shù)的極值和條件極值、最大值和最小值二重積分的概念、基本性質和計算無界區(qū)域上簡單的反常二重積分考試要求1.
7、了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質.3.了解多元函數(shù)偏導數(shù)與全微分的概念,會求多元復合函數(shù)一階、二階偏導數(shù),會求全微分,會求多元隱函數(shù)的偏導數(shù).4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并