資源描述:
《基于模糊-隱馬爾可夫模型的復(fù)合式攻擊預(yù)測(cè)方法研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、萬(wàn)方數(shù)據(jù)擊場(chǎng)景的識(shí)別和攻擊意圖序列的預(yù)測(cè)三項(xiàng)功能,將成為主動(dòng)防御的重要組成部分,并應(yīng)用于主動(dòng)防御實(shí)踐中。通過(guò)仿真實(shí)驗(yàn)可以看出:經(jīng)過(guò)訓(xùn)練的隱馬爾可夫模型比未經(jīng)過(guò)訓(xùn)練的隱馬爾可夫模型在對(duì)復(fù)合式攻擊行為的識(shí)別和預(yù)測(cè)效果更佳,而且在當(dāng)前四類主流的復(fù)合式攻擊預(yù)測(cè)方法中,本文提出的基于模糊一隱馬爾科夫模型的復(fù)合式攻擊預(yù)測(cè)方法在報(bào)警信息預(yù)處理、報(bào)警信息關(guān)聯(lián)等方面的綜合性能最優(yōu)。關(guān)鍵詞:報(bào)警信息關(guān)聯(lián)規(guī)則模糊評(píng)價(jià)法隱馬爾可夫模型復(fù)合式攻擊萬(wàn)方數(shù)據(jù)AbstractAsweentertheinformationage,therequirementsof
2、securityofinformationtransmission,informationstorageandinformationprocessingareofamuchhigherstandard.Thenetworksecuritynotonlyrelatestothesafetyofthecountry,thedevelopmentofeconomyandtheprogressofthescienceandtechnology,butalsorelatestothevitalinterestsofeveryone.Netw
3、orkisadouble-edgedsword;itnotonlyacceleratestheinformatizationofsociety,butalsobringsahugechallengefortheinformationsecurityissues.Inrecentyears,therateofnetworksecuritycrimesriseseveryyear.Particularly,withtheadventofonlinebanking,mobilebanking,e—commerceandotheronli
4、neservices,andthenetworksecurityissuescausedbytheconstructionofavarietyofprivatenetworks,thefollowingnetworksecurityproblemsbecomehotissuesaswell.Inthisstage,thetraditionalpassivedefenseCan’tadapttothedynamicchangesofnetworksecurity.Afterapplyingofthedefenseindepthoft
5、hemilitaryfieldtothesecurityareas,activedefenseemerges.Inthispaper,throughthestudyoftheexistedmulti—stepaRackspredictionmethods,theimprovedApriorialgorithmandfuzzyevaluationareappliedtothehiddenmarkovmodel,andtheapproachtoforecastingmulti-stepattackbasedonfuzzyhiddenm
6、arkovmodelisproposed.AfterthesemanticanalysisofrawalertsandfeaturesanalysispossessedbyaRacks,therawalertsarefusedintosuperalertaccordingtotherulesfirstly.TherealIntentionsofattackersarehiddenandCan’tbeobservedbyobserversdirectly.Buttherawalertscanbeobserveddirectly.In
7、thisregard,hiddenmarkovmodelisappliedtomulti‘stepattackspredictionmethods,inwhichthealertsareasobservationlayerandtherealintentionsareashiddenlayenThentheattackscenariowhichthealertsbelongtoisrecognizedbytheForwardalgorithmofHMMandthenextpossibleattacksequenceisforeca
8、stedbyViterbialgorithm.Finally,theexistedhiddenmarkovmodelistrainedbyBaum-WelchalgorithmofHMMandwegetanewfuzzyhiddenmarkovmo