資源描述:
《基于雙目視覺(jué)的稠密立體匹配算法研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、分類號(hào)UDC密級(jí)基學(xué)號(hào)1307010094于雙目視覺(jué)的稠密立體碩士學(xué)位論文匹配算法研究基于雙目視覺(jué)的稠密立體匹配算法研究柯柯俊山俊山學(xué)科門(mén)類:理學(xué)學(xué)科名稱:數(shù)學(xué)西指導(dǎo)教師:戴芳教授安理工申請(qǐng)日期:2016年3月大學(xué)萬(wàn)方數(shù)據(jù)萬(wàn)方數(shù)據(jù)萬(wàn)方數(shù)據(jù)西安理工大學(xué)碩士學(xué)位論文算法平均排名為112.7。最后,針對(duì)被動(dòng)測(cè)量技術(shù)中,三角測(cè)量方法不能充分利用攝像機(jī)內(nèi)參數(shù)的缺陷對(duì)其進(jìn)行了改進(jìn)。我們應(yīng)用(2)中的S-ELAS視差計(jì)算方法,使用KITTI視覺(jué)基準(zhǔn)數(shù)據(jù)庫(kù)中的交通場(chǎng)景圖像對(duì)改進(jìn)的三角測(cè)量方法進(jìn)行了測(cè)試。測(cè)試結(jié)果
2、表明,改進(jìn)的三角測(cè)量方法的平均坐標(biāo)準(zhǔn)確率是89.79%,平均距離準(zhǔn)確率是96.60%,可見(jiàn)修正的距離計(jì)算方法非常精確。關(guān)鍵詞:雙目視覺(jué);立體匹配;SIFT;SLIC;ELASII萬(wàn)方數(shù)據(jù)AbstractTitle:STUDYONDENSESTEREOCORRENPONDENCEALGORITHMFORBINOCULARVISIONMajor:MathematicsName:JunshanKeSignature:Supervisor:Prof.FangDaiSignature:AbstractBa
3、sedontheunderstandingofbinocularstereovisionsystem,wehavedonesomeresearchesonfeature-basedandwindow-basedstereocorrenpondencealgorithms,andmainlydiscussedhowtoimprovethedisparityresultofbinocularstereomatchingalgorithmandhowtodevelopdistancecalculati
4、onmethod.Thestereomatchingalgorithmoftenmakeitdifficulttoobtainaccuratedisparitysearchrange,expensivecostofcomputationandlowmatchingrate,thisthesispresentstwoimprovedalgorithms:(1)TakingtheadvantagesofSIFTfeatureextractionalgorithm,EMDalgorithmandwin
5、dow-basedmatchingtechniquesintoconsideration,aimproveddensestereocorrespondencealgorithmisproposed.First,weproposealocalfeaturedetectionalgorithmcombinedSIFTwithEMD.BecauseSIFTisaveryrobustlocalfeatureextractiontechniquewhichisgoodforcapturingthemost
6、importantfeaturesofimage,andtheEMDmethodisself-adaptiveandhighlyefficientinanalyzingnonlinearandnon-stationarysignalandthismethodisabletodecomposethesignalintothesumofsimplesignalsindifferentfrequency.Afterthefeatureextractionofimage,thematchingpoint
7、pairswithhigheraccuracyareobtainedbyfeaturematchingmethodandepipolargeometricconstraint,andthenthesematchingpointsareusedtoestimatetheinitialdisparitysearchrange.Second,onthebasisofnewblockmatchingstrategyandmodifiedmatchingcostfunction,thedensedispa
8、ritymapisobtainedbytheimproveddisparityreliabilityfunctionorweightenergyfunction.TheresultsshowthatthefeaturedetectionalgorithmcombinedSIFTwithEMDismoreaccuratethanthetraditionalSIFTapproach,anditcouldclosertheactualrequirementdisparitysearchrange.An