資源描述:
《ln2 Review of Asymptotic Theory.pdf》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學術(shù)論文-天天文庫。
1、ApEc8212EconometricsAnalysis---Lecture#2ReviewofAsymptoticTheory(Wooldridge,Chap.3)Thislecturereviewsbasicresultsinasymptotictheory,whichmostofyouhaveseenbeforeinsomeform(Chapter4andAppendixDofGreene,2008).Thismaterialisnotveryexciting,butitisveryuseful.Wooldridgedoesnotgiveproofs,b
2、utyoucanseeGreene,andmoregenerallyHalbertWhite(2001,AsymptoticTheoryforEconometricians:RevisedEdition)forproofsandamorerigoroustreatment.I.ConvergenceofDeterministicSequencesLet’sstartwithsomedefinitions:Convergence:Asequenceof(nonrandom)numbers{aN:N=1,2,…}convergestoaif,forallε>0th
3、ereexistsanNεsuchthatifN>Nεthen
4、aN–a
5、<ε.ThisiswrittenasaN→aasN→∞,oraslimaN=a.N??Boundedness:Asequenceof(nonrandom)numbers{aN:N=1,2,…}isboundedifandonlyifthereissomeb<∞suchthat
6、aN
7、8、λnumbersisatmostoforderN,denotedbyO(N),ifλaN/Nisbounded.Asequence{aN}isoforderλλλsmallerthanN,denotedbyo(N),iflimaN/N=0.N??Thesetwodefinitionsformalizewhatismeantby“thesameorderofmagnitude”anda“smallerorderλofmagnitude”.If{aN}isO(N),thenaNcannotbeλλinfinitelylargerthanNasN→∞.If{aN}i
9、so(N),λthenaNisinfinitelysmallerthanNasN→∞.Bothtypesoforderstatisticscanbeusedwithλ=0,inλλwhichcaseN=1.InthiscaseO(N)(“atmostoforder”)isdenotedasO(1),whichsimplymeansthatλ{aN}isbounded.Similarly,o(N)(“ofordersmallerthan”)isdenotedaso(1)whenλ=0,whichmeansthataNconvergestozero,i.e.lim
10、aN=0?{aN}iso(1).N??λλNotethatforanysequence{aN},o(N)impliesO(N):λλiflimaN/N=0thenaN/Nisbounded.Settingλ=0N??showsthatif{aN}convergesto0then{aN}isbounded.Finally,forsequencesofvectorsormatrices,theλsequenceisO(N)onlyifalltheelementsinitareλλO(N),andthesameholdsforo(N).2II.Convergence
11、inProbabilityandBoundedinProbability(op(1)andOp(1))Sofarwehavediscussedsequencesofnumbers,butineconometricsweworkwithvariables,soweneedtodefineboundednessandconvergenceofvariables.Thissectionpresentsbasicdefinitionsandresults.Convergenceinprobability:Asequenceofvariables{xN:N=1,2,…}
12、convergesinprobabil