multivariate regression depthnew

multivariate regression depthnew

ID:34493807

大?。?09.33 KB

頁(yè)數(shù):12頁(yè)

時(shí)間:2019-03-06

multivariate regression depthnew_第1頁(yè)
multivariate regression depthnew_第2頁(yè)
multivariate regression depthnew_第3頁(yè)
multivariate regression depthnew_第4頁(yè)
multivariate regression depthnew_第5頁(yè)
資源描述:

《multivariate regression depthnew》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。

1、MultivariateRegressionDepthMarshallBern?DavidEppstein?AbstractTheregressiondepthofahyperplanewithrespecttoasetofnpointsinRdistheminimumnumberofpointsthehyperplanemustpassthroughinarotationtovertical.Wegeneralizehyperplaneregressiondepthtok-?atsforanykbetween0andd?1.Thek=0casegivestheclassicalnotio

2、nofcenterpoints.Weprovethatforanykandd,deepk-?atsexist,thatis,foranysetofnpointstherealwaysexistsak-?atwithdepthatleastaconstantfractionofn.Asaconsequence,wederivealinear-time(1+?)-approximationalgorithmforthedeepest?at.1IntroductionLinearregressionasksforanaf?nesubspace(a?at)that?tsasetofdatapoin

3、ts.Themostfa-miliarcaseassumesd?1independentorexplanatoryvariablesandonedependentorresponsevariable,and?tsahyperplanetoexplainthedependentvariableasalinearfunctionoftheinde-pendentvariables.Quiteoften,however,theremaybemorethanonedependentvariable,andthemultivariateregressionproblemrequires?ttinga

4、lower-dimensional?attothedatapoints,perhapsevenasuccessionof?atsofincreasingdimensions.Multivariateleast-squaresregressioniseasilysolvedbytreatingeachdependentvariableseparately,butthisisnotcorrectforothercommonformsofregressionsuchasleastabsolutedeviation[8]orleastmedianofsquares[12].Rousseeuwand

5、Hubert[14]introducedthenotionofregressiondepthasarobustcriterionforlinearregression.TheregressiondepthofahyperplaneH?ttingasetofnpointsistheminimumnumberofpointswhoseremovalmakesHintoanon?t.Anon?tisahyperplanethatcanberotatedtovertical(thatis,paralleltothedependentvariable'saxis)withoutpassingthro

6、ughanypoints.Theintuitionbehindthisde?nitionisthataverticalhyperplanepositsnorelationshipbetweenthearXiv:cs/9912013v1[cs.CG]20Dec1999dependentandindependentvariables,andhencemanypointsshouldhavetobeinvalidatedinordertomakeagoodregressionhyperplanecombinatoriallyequivalenttoaverticalhyperplane.Sinc

7、ethisde?nitiondoesnotmakeuseofthesizeoftheresiduals,butonlyusestheirsigns,itisrobustinthefaceofskewedorheteroskedastic(data-dependent)errormodels.Regressiondepthalsohasanumberofothernicepropertiesincludinginvaria

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。