Multivariate Latent Variable

Multivariate Latent Variable

ID:39756860

大小:4.64 MB

頁數(shù):94頁

時(shí)間:2019-07-10

Multivariate Latent Variable_第1頁
Multivariate Latent Variable_第2頁
Multivariate Latent Variable_第3頁
Multivariate Latent Variable_第4頁
Multivariate Latent Variable_第5頁
資源描述:

《Multivariate Latent Variable》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、TowardsSmoothParticleFiltersforLikelihoodEstimationwithMultivariateLatentVariablesbyAnthonyLeeB.Sc.,TheUniversityofBritishColumbia,2006ATHESISSUBMITTEDINPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOFMASTEROFSCIENCEinTheFacultyofGraduateStudies(ComputerScience)THEUNIVERSITYOFBRITISHCOLU

2、MBIA(Vancouver)August,2008cAnthonyLee2008AbstractInparametrizedcontinuousstate-spacemodels,onecanobtainestimatesofthelikelihoodofthedatafor?xedparametersviatheSequentialMonteCarlomethodology.Unfortunately,evenifthelikelihoodiscontinuousintheparameters,theestimatesproducedbypracticalpartic

3、le?ltersarenot,evenwhencommonrandomnumbersareusedforeach?lter.Thisisbecausethesameresamplingstepwhichdrasticallyreducesthevarianceoftheestimatesalsointroducesdiscontinuitiesintheparticlesthatareselectedacross?lterswhentheparameterschange.Whenthestatevariablesareunivariate,themethodologyof

4、[23]givesanestimatorofthelog-likelihoodthatiscontinuousintheparameters.Wepresentanon-trivialgeneralizationofthismethodusingtree-basedo(N2)(andaslowasO(NlogN))resamplingschemesthatinducesigni?-cantcorrelationamongsttheselectedparticlesacross?lters.Inturn,thisreducesthevarianceofthedi?erenc

5、ebetweenthelikelihoodevaluatedfordi?erentvaluesoftheparametersandtheresultingestimatorisconsiderablysmootherthannaivelyrunningthe?lterswithcommonrandomnumbers.Importantly,inpracticeourmethodsrequireonlyachangetotheresampleoperationintheSMCframeworkwithouttheadditionofanyextraparametersand

6、canthereforebeusedforanyapplica-tioninwhichparticle?ltersarealreadyused.Inaddition,exceptingtheoptionaluseofinterpolationintheschemes,therearenoregularityconditionsfortheirusealthoughcertainconditionsmakethemmoreadvantageous.Inthisthesis,we?rstintroducetherelevantaspectsoftheSMCmethodolog

7、ytothetaskoflikelihoodestimationincontinuousstate-spacemodelsandpresentanoverviewofworkrelatedtothetaskofsmoothlikelihoodestimation.Followingthis,weintroducetheoreticallycorrectresamplingschemesthatcannotbeimplementedandthepracticaltree-basedresamplingschemesthatwer

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。