資源描述:
《BP神經(jīng)網(wǎng)絡(luò)在大型斜拉橋施工控制中的應用研究》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學術(shù)論文-天天文庫。
1、河海大學碩士學位論文BP神經(jīng)網(wǎng)絡(luò)在大型斜拉橋施工控制中的應用研究姓名:于濤申請學位級別:碩士專業(yè):大地測量學與測量工程指導教師:黃張裕;趙仲榮20070401AbstractWitllthefastdevelopmentofthetransportationbusinessandtheunremittinglytechniqueofbridgeconstruction,bridgeconstructiontoacrossthedegree,highlydifficultdirectiondevel
2、opmentgreatly,structuresupple,beautyandsafetyofcable-stayedbridgegraduallydriveextensiveadoption.ConstructioncontrolisanimportantpartofcaMe-stayedbridgeconstructiontechnique;itisakeytomakeSUretheconstructionqualityofbridge.Soitisanimportantworktocable
3、-stayedbridge’Sconstructioncontr01.Factorsthataffectconstructioncontrolmanyandcomplex,andtheseinformationindependenteachother.Howwillvalidexploitationistheseinformation,combinemodernmathematicstheories,builduprelatedsupervisionmodelandealTyonavalidcon
4、structioncontrol,isthemaincontentsofthistextresearch.Thefulltextcombinedwimthecharacteristicsoflargecable-stayedbridgeconstruction,researchtheartificialneuralnetworkusedtoconstructioncontrol,worksmainlydidasfollows:(1)wimtheanalyticalanddiscussionofth
5、ebasicprincipletotheartificialneuralnetwork,fromtheories,thearticleexpoundsandprovedthepossibilityoftheneuralnetworkmethodusedtoconstructioncontr01.Inthisfoundationtop,thefactorsthatinfluencecable—stayedbridge’sconstructioncontrolanditsinteractionrela
6、tionareresearched.(2)AtthefoundationofanalyticaloftheblemishmatBPstudycalculateswayexistentinphysicallyapplied,giveahomologousimprovementmethod.CombineananalyticalresulttoestablishamodelthatinkeepingwimtheBPartificialneuralnetwork,topredicttheformedge
7、aringlinecontrolofthesteelboxofcabled-bridge.(3)Aimatagreaterproblemoftheconstructiondataunitandthequantityclassdifference,theadoptionamethodofdatareturnonturning,andovercametheclassbaddatawhichinfluenceoftheastringencydisadvantagetothenetworkfromthes
8、elf-study.(4)Combinetheexampletheell百neeringofthethirdNanjingYangtzeRiverBridge,drawledupthelineformcontrolpredictionprocedurewiththeMATLABprocedurelanguage,obtainedagoodresult.(5)Comparethegraytheoriespredictionandtheneuralnetworkmethodpredic