資源描述:
《基于模糊神經(jīng)網(wǎng)絡(luò)的斜軋建模研究》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、的模糊神經(jīng)網(wǎng)絡(luò),及其輸入?yún)?shù)的隸屬函數(shù)。訓(xùn)練數(shù)據(jù)通過有限元建模和實(shí)驗數(shù)據(jù)得到。因此,主要工作包括以下幾個方面:(1)在深入了解斜軋無縫鋼管生產(chǎn)工藝和理解斜軋理論的基礎(chǔ)上,運(yùn)用ANSYS有限元軟件對其進(jìn)行了建模仿真,采集到了模糊神經(jīng)網(wǎng)絡(luò)所需的樣本數(shù)據(jù);(2)建立無縫鋼管斜軋過程的模糊神經(jīng)網(wǎng)絡(luò),選取了隸屬函數(shù),將樣本數(shù)據(jù)分成兩組:訓(xùn)練數(shù)據(jù)和檢驗數(shù)據(jù)。(3)N用有限元模擬得到的數(shù)據(jù)對模糊神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練。(4)通過用鋁管代替鋼管進(jìn)行斜軋規(guī)律研究,搭建了實(shí)驗平臺,驗證了有限元模擬斜軋的準(zhǔn)確性和可靠性。通過基于模糊神經(jīng)網(wǎng)絡(luò)斜軋建模研究,建立了工藝參數(shù)與質(zhì)量參數(shù)的關(guān)系,對斜軋工藝具有指導(dǎo)意義。
2、同時,得到的模糊神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)模型,為實(shí)現(xiàn)斜軋過程自動控制奠定基礎(chǔ)。關(guān)鍵詞:斜軋;模糊控制;模糊神經(jīng)網(wǎng)絡(luò);建模ABSTRACTCross—rollingisanimportantproductiontechnologyintheproductionofseamlesspipe.Ithasbecomeabasictechnologyandakeymeansforallkindsofseamlesspipeproductionafter100years’development.Butitisoftendifficultyforpeopletobuildtheexactmathmodel
3、byusingclassicmechanicsapproach.ByusingFEM,thecalculatingprecisionincross—rollingprocessishigherthanusingothermethods.Butthesimulationtimeistoolongtobeon-linecontrolmathematicsmodels.ItiSenforcedtocarryonthedevelopmentandresearchonmathematicsmodelsofartificialneuralnet.Thisprojectisastudyofcro
4、ss—rollingprocesstopipe—elongatingoperationintheproductionofseamlesspipe.Themappingrelationshipbetweentechnicalparametersandqualityparametersisobtainedbycalculatingparametersincross.rollingprocess。suchasdeformationstate,mechanicalstate,pipequalityect.Andthefuzzyneuralnetworkandmembershipfuncti
5、onofinputparametersincross.rollingprocessareestablished.TrainingdataaregainedthroughFEMmodelingandexperimentaldata.Therefore,themainworkincludesthefollowingaspects:(1)Basedonadeepknowledgeofproductiontechnologyofcross‘rollingseamlesspipeandcross.rollingtheory,sampledatafortheneedoffuzzyneuraln
6、etworkarecollectedbyANSYS/LS—DYNAformodelingandSimulation.(2)Establishfuzzyneuralnetworkaboutcross—rollingprocessofseamlesspipe;selectmembershipfunction;anddividesampledateintotwogroups:trainingdateandtestingdate.(3)TrainfuzzyneuralnetworkbyusingexperimentaldataandFEMsimulationdata.(4)Buildane
7、xperimentalplatformandverifytheveracityandreliabilityoffinite.elementmodelingofcross.rollingthroughstudyingtheprincipleofcross—rollingbyusingaluminumpipeinsteadofsteelpipe.Basedonthemodelingresearchonfuzzyneuralnetworkofcross—rolling,th