資源描述:
《Hopfπ-余代數(shù)上的Doi-Hopf模與辮子T-代數(shù)》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、DOI_HOPFMODULESFORHOPF丌-COALGEBRAANDBRAIDEDT.ALGEBRAABSTRACTThenotionsofHopf7r-coalgebras,where7/"isadiscretegroup,generalizethoseofHopfalgebras.Hopf'r-coalgebrawasusedbyV.G.TuraevtoconstructHennings—likeandKuperbergAikeinvariantsofprincipal丌一bundlesoverlinkcomplementsandover3-manifolds.Thispaperma
2、inlystudiesMaschketypetheoremandFrobeniuspropertiesofDoi-HopfmodulesforHopf_,r-aJgebras.AlsowegeneralizesuchresultstoentwinedⅡ一modules.V.G.互hraevintroducedthenotionofamodularcrossedv-category(orcalledT-categoryfollowingM.Ztmino[4])andshowedthatsuchacategorygivesrisetoathree-dimensionalhomotopyquant
3、umfieldtheorywithtargetspaceⅣ(霄,1).Finally’westudythepropertiesof'I-algebraandgetallexampleofT-category:thecategoryofcorepresentation《T-algebra.Insectionl,wereviewthebasicdefinitions,notionsandexamplesusedinthisP印er·Insection2,firstly,weintroducetheconceptofanormalized7rwintegral.(/singit,weproveaM
4、aschketypetheoremofDoi-HopfmodulesforHopfr-coalgebras.Thatistheorem2.7:Let(EA,④beaDoi-Hopf7r-datum,ifthereexistsanormalized丌一integral{丸:Q固AI_《~loA1)口自of(日,A,G),thenthefollowingassertionshold.(1)Amorphism“=ftk:心—十.^妃}口∈Fino.^/fjhasaretraction(resp.a(chǎn)section)ina^^j,iftheA1·linearmapul:Ⅳ口葉A如hasaretract
5、ion(resp.a(chǎn)section)inM山;(2)M∈。朋A,ifMissemisimpleasarightA1.module,thenMisseraisimpleas∞objectinc朋互.As蛐application,weobtainacharacterizationfor(H,A,C)Doi—Hopf_7r-modulestobeprojectiveasA—modules(CorollⅫy2.9).Meanwhile,weapplyourresultstocharactertheseparabilityoftheforgetfulfunctorF’。朋A—÷朋^l(Theorem2
6、.12).Attheendofthissectionwegeneralizethisresulttoentwinedw—modulesfTheorem2,is).iijInsection3,wegiveSOmeequivalentconditionsfortheforgetfulfunctorF:。朋jH/Ⅵ^ItobeaFrobeniusfunctor.ThenOUl"mainresultisnowthefollowing(Theorem33):Let(H,A,C)beaDoi-Hopfr-datum.AssumethatCisafinitetypeHopf丌-eoalgebra.Then
7、thefollowingstatementsareequivalent:(1)ThefunctorG={甌固·)口∈”:M^l—+cM互isaleftadjointoftheforgetfulfunctorF:c川j------4川^1;(2)Thereexistsz=£c/oa‘∈a@A1whichsatisfiedforanya∈A1,。n=a2:(i.e.∑q-。(一1.1)oata(o,1)=∑ci@