stock prediction-a neural network approach

stock prediction-a neural network approach

ID:40961865

大?。?77.88 KB

頁數(shù):44頁

時(shí)間:2019-08-12

stock prediction-a neural network approach_第1頁
stock prediction-a neural network approach_第2頁
stock prediction-a neural network approach_第3頁
stock prediction-a neural network approach_第4頁
stock prediction-a neural network approach_第5頁
資源描述:

《stock prediction-a neural network approach》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、StockPrediction–ANeuralNetworkApproachKarlNygrenkarlnyg@kth.se28thMarch2004MasterThesisRoyalInstituteofTechnology,KTHSupervisor:Prof.KennethHolmstr¨omExaminer:Dr.TorkelErhardssonAbstractPredictingstockdatawithtraditionaltimeseriesanalysishasproventobedif-?cult.Ana

2、rti?cialneuralnetworkmaybemoresuitableforthetask.Primarilybecausenoassumptionaboutasuitablemathematicalmodelhastobemadepriortoforecasting.Furthermore,aneuralnetworkhastheabilitytoextractusefulinformationfromlargesetsofdata,whichoftenisrequiredforasatisfyingdescrip

3、tionofa?nancialtimeseries.Thisthesisbeginswithareviewofthetheoreticalbackgroundofneuralnet-works.SubsequentlyanErrorCorrectionNeuralNetwork(ECNN)isde?nedandimplementedforanempiricalstudy.Technicalaswellasfundamentaldataareusedasinputtothenetwork.One-stepreturnsoft

4、heSwedishstockindexandtwomajorstocksoftheSwedishstockexchangearepredictedusingtwoseparatenetworkstructures.DailypredictionsareperformedonastandardECNNwhereasanextensionoftheECNNisusedforweeklypredictions.Inbenchmarkcomparisons,theindexpredictionprovestobesuccessfu

5、l.Theresultsonthestocksarelessconvincing,neverthelessthenetworkoutperformsthenaivestrategy.SammanfattningAttpredikterab¨orsdatamedtraditionelltidsserieanalysharvisatsigvarasv?art.Ettarti?cielltneuraltn¨atverkkanvaramerpassandef¨oruppgiften.Fr¨amstd¨arf¨orattingaan

6、tagandenomenpassandematematiskmodellm?asteg¨orasinnanprediktering.Vidareharettneuraltn¨atverkf¨orm?aganattextraheraanv¨andbarinformationfr?anstoradatam¨angder,vilketofta¨arn¨odv¨andigtf¨orentillfredsst¨allandebeskrivningaven?nansielltidsserie.Deth¨arexamensarbetet

7、b¨orjarmedengenomg?angavteorinbakomneuralan¨atverk.D¨arefterde?nierasochimplementerasettfelkorrigerandeneuraltn¨atverk(ECNN)f¨orenempiriskstudie.B?adetekniska-ochfundamentaladataanv¨andssomindatatilln¨atverket.Enstegsavkastningarf¨orGeneralindexsamttv?astoraaktier

8、p?aStockholmsb¨orsenpredikterasmedtv?aseparatan¨atverks-strukturer.Dagligaprediktionerutf¨orsp?aenstandardECNNmedanenut¨okadvariantavECNNanv¨andsf¨orvec

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。