Automatic classification of protein structure by using Gauss integrals

Automatic classification of protein structure by using Gauss integrals

ID:41115414

大小:416.77 KB

頁(yè)數(shù):6頁(yè)

時(shí)間:2019-08-16

Automatic classification of protein structure by using Gauss integrals_第1頁(yè)
Automatic classification of protein structure by using Gauss integrals_第2頁(yè)
Automatic classification of protein structure by using Gauss integrals_第3頁(yè)
Automatic classification of protein structure by using Gauss integrals_第4頁(yè)
Automatic classification of protein structure by using Gauss integrals_第5頁(yè)
資源描述:

《Automatic classification of protein structure by using Gauss integrals》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、AutomaticclassificationofproteinstructurebyusingGaussintegralsPeterR?gen*andBorisFain*DepartmentofMathematics,TechnicalUniversityofDenmark,Building303,DK-2800KongensLyngby,Denmark;and?DepartmentofStructuralBiology,StanfordUniversity,Stanford,CA94305CommunicatedbyMichaelLevitt,StanfordUniversityScho

2、olofMedicine,Stanford,CA,October24,2002(receivedforreviewSeptember12,2002)Weintroduceamethodoflookingat,analyzing,andcomparing‘‘thoughsignificantprogresshasbeenmadeoverthepastproteinstructures.Thetopologyofaproteiniscapturedby30decade,afast,reliableandconvergentmethodforproteinnumbersinspiredbyVass

3、ilievknotinvariants.Toillustratethesim-structuralalignmentisnotyetavailable.’’Thedeficienciesofplicityandpowerofthistopologicalapproach,weconstructamea-currentmethodsarisefromtheirrelianceondistance-basedsure(scaledGaussmetric,SGM)ofsimilarityofproteinshapes.Under[RMSD;seeKabsch(3)]measuresofsimila

4、rity,andalsofromthismetric,proteinchainsnaturallyseparateintofoldclusters.Weusetheirconsequentrequirementforsequencealignment.SGMtoconstructanautomaticclassi?cationprocedurefortheRMSDisanexcellentmeasureofsimilarityfornearlyidenticalCATH2.4database.Themethodisveryfastbecauseitrequiresneitherstructu

5、res(5),butoncetheshapeoftwoproteinsbeginstoalignmentofthechainsnoranychainchaincomparison.Italsohasdiverge,RMSDloosesitseffectiveness.Twocompletelyunre-onlyoneadjustableparameter.Weassign95.51%ofthechainsintolatedproteinsmayhavealargeRMSD,butsomaytworelatedtheproperC(class),A(architecture),T(topolo

6、gy),andH(homologouschainswhichconsistofidenticalsubunitsorienteddifferentlysuperfamily)fold,?ndallnewfolds,anddetectnofalsegeometricwithrespecttoeachother.RMSDcannotdistinguishthefirstpositives.UsingtheSGM,wedisplayamapofthespaceoffoldscasefromthesecond.projectedontotwodimensions,showtherelativeloc

7、ationsoftheThisdrawbackisusuallyaddressedbyusingvarioussophisticatedmajorstructuralclasses,andzoomintothespaceofproteinstosequencealignmenttechniquesthatfindrelatedsubunits(6–11).showarchitecture,topology,a

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。