Automatic Classification of Power Quality

Automatic Classification of Power Quality

ID:40707765

大小:1.56 MB

頁(yè)數(shù):10頁(yè)

時(shí)間:2019-08-06

Automatic Classification of Power Quality_第1頁(yè)
Automatic Classification of Power Quality_第2頁(yè)
Automatic Classification of Power Quality_第3頁(yè)
Automatic Classification of Power Quality_第4頁(yè)
Automatic Classification of Power Quality_第5頁(yè)
資源描述:

《Automatic Classification of Power Quality》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)

1、IEEETRANSACTIONSONINDUSTRIALELECTRONICS,VOL.61,NO.1,JANUARY2014521AutomaticClassi?cationofPowerQualityEventsUsingBalancedNeuralTreeB.Biswal,Member,IEEE,M.Biswal,Member,IEEE,S.Mishra,SeniorMember,IEEE,andR.JalajaAbstractThispaperproposesanempirical-modedecomposi-time.TheFouriertransf

2、ormgivesinformationregardingthetion(EMD)andHilberttransform(HT)-basedmethodforthefrequencycomponentspresentbutdoesnotcontaininformationclassi?cationofpowerquality(PQ)events.Nonstationarypoweronwhentheyexistandforhowlong.AlthoughtheFouriersignaldisturbancewaveformsareconsideredasthes

3、uperimposi-transformisoneofthefasttechniques,itsef?ciencyislimitedtionofvariousundulatingmodes,andEMDisusedtoseparateouttheseintrinsicmodesknownasintrinsicmodefunctions(IMFs).tostationarysignalsonly.MostPQeventsarenonstationaryandTheHTisappliedonalltheIMFstoextractinstantaneousam-he

4、ncerequiretechniquethatwouldnotonlyprovidefrequencyplitudeandfrequencycomponents.Thistimefrequencyanalysisinformationbutalsocapturethetimingofoccurrenceoftheresultsintheclearvisualdetection,localization,andclassi?cationdisturbance.Theshort-timeFouriertransformgivesagoodofthedifferen

5、tpowersignaldisturbances.Therequiredfeaturecharacterizationofthesignal.Itprovidesfrequencyaswellasvectorsareextractedfromthetimefrequencydistributiontoperformtheclassi?cation.Abalancedneuraltreeisconstructedtotimeinformation.Thenonstationarynatureofthesignaliswellclassifythepowersig

6、nalpatterns.Finally,theproposedmethodisde?ned.However,duetotheconstantwindowlength,somecomparedwithanS-transform-basedclassi?ertoshowtheef?cacycharacteristicsofthesignalarenotdetectedwell.ThetimeoftheproposedtechniqueinclassifyingthePQdisturbances.andfrequencyresolutionislimitedbyth

7、eHeisenberg–GaborIndexTermsBalancedneuraltree(NT)(BNT),empirical-inequality.Differenttypesofdisturbanceswouldrequirewin-modedecomposition(EMD),Hilberttransform(HT),dowsofdifferentlengths.Choosingthebestwindowlengthinstantaneousfrequency(IF),intrinsicmodefunction(IMF),couldbeaproblem

8、.Thewavelettransfor

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。