資源描述:
《Frobenius Algebras and Two-Dimensional Topological Quantum Field Theories》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、TWO-DIMENSIONALTOPOLOGICALQUANTUMFIELDTHEORIESANDFROBENIUSALGEBRASLOWELLABRAMSJohnsHopkinsUniversityDepartmentofMathematics3400CharlesStreetBaltimore,MD21218ABSTRACTWecharacterizeFrobeniusalgebrasAasalgebrashavingacomultiplicationwhichisamapofA-modules.Thischaracterizationallowsasimpledem
2、onstrationofthecompatibilityofFrobeniusalgebrastructurewithdirectsums.WethenclassifytheindecomposableFrobeniusalgebrasasbeingeitherannihilatoralgebras"
3、algebraswhosesocleisaprincipalideal
4、oreldextensions.Therelationshipbetweentwo-dimensionaltopologicalquantumeldtheoriesandFrobeniusalge
5、brasisthenformulatedasanequivalenceofcategories.TheproofhingesonournewcharacterizationofFrobeniusalgebras.Theseresultstogetherprovideaclassicationoftheindecomposabletwo-dimensionaltopologicalquantumeldtheories.Keywords:topologicalquantumeldtheory,frobeniusalgebra,two-dimensionalcobordi
6、sm,categorytheory1.IntroductionTopologicalQuantumFieldTheories(TQFT's)wererstdescribedaxiomati-callybyAtiyahin[1].Sincethen,muchworkhasbeendonetounderstandthealgebraicstructuresarisinginthethreeandfour-dimensionalcases(see[2]andthereferencescitedthere.)Inthetwo-dimensionalcase,thealgebra
7、icstructureoflatticeeldtheoriesarewelldiscussedin[3],butthecaseofatwo-dimensionaltheorynothavingdistinguishedzero-cells,orcorners,"hasnotbeencompletelyunderstood.Ofcourse,thesetwotheoriesarenotthesame;themostimmediatelyapparentdierencebetweenthelatticeandregularcasesisthelackofcommuta-
8、tivityintheformer.Aclassicationofthetwo-dimensionalcaseintermsofthespectrumofaspeciclinearoperatorhasbeenoeredin[4],butactuallydealswitharestrictedcase,aswillbediscussedbelow.InterestspecicallyinthetwodimensionalcasegoesbacktosuchsourcesasSegal'spresentationin[5]oftwo-dimensionalconfo
9、rmaleldtheoriesandWitten'sworkin[6]relatingthesametoresultsinhigherdimensions.In[7]Voronovpresentsafolktheorem"assertingthatatwo-dimensionalTQFTisequivalenttoaFrobeniusalgebra"(FA),andsketchesaproof.(See[8]foraphysicist'saccount.)Nevertheless,therehasbeendiculty