資源描述:
《相交線.1.1 相交線》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、第五章相交線與平行線5.1相交線5.1.1相交線要點感知1有一條公共邊,另一邊__________,具有這種位置關(guān)系的兩個角互為鄰補角.預習練習1-1如圖,直線AB和CD相交于點O,則∠AOC的鄰補角是__________.1-2如圖,點A,O,B在同一直線上,已知∠BOC=50°,則∠AOC=__________.要點感知2有一個公共頂點,并且一個角的兩邊分別是另一個角的兩邊的__________,具有這種位置關(guān)系的兩個角互為對頂角.預習練習2-1如圖,直線AB和CD相交于點O,則∠AOC的對頂角是__________.要點感知3對頂角__________.預習練習3-1(2014·泉州)如
2、圖,直線AB與CD相交于點O,∠AOD=50°,則∠BOC=__________.知識點1認識對頂角和鄰補角1.(2014·涼山)下列圖形中,∠1與∠2是對頂角的是()2.下列說法中,正確的是()A.相等的兩個角是對頂角B.有一條公共邊的兩個角是鄰補角C.有公共頂點的兩個角是對頂角D.一條直線與端點在這條直線上的一條射線組成的兩個角是鄰補角3.如圖所示,AB與CD相交所成的四個角中,∠1的鄰補角是__________,∠1的對頂角是__________.知識點2鄰補角和對頂角的性質(zhì)4.下面四個圖形中,∠1=∠2一定成立的是()5.如圖是一把剪刀,其中∠1=40°,則∠2=__________,
3、其理由是____________________.6.在括號內(nèi)填寫依據(jù):如圖,因為直線a,b相交于點O,所以∠1+∠3=180°(____________________),∠1=∠2(____________________).7.如圖,O是直線AB上一點,∠COB=30°,則∠1=__________.8.如圖所示,已知直線AB,CD相交于點O,OA平分∠EOC,∠EOC=70°,則∠BOD=__________.9.如圖所示,直線AB和CD相交于點O,若∠AOD與∠BOC的和為236°,則∠AOC的度數(shù)為()A.62°B.118°C.72°D.59°10.如圖,三條直線l1,l2,l3相
4、交于一點,則∠1+∠2+∠3等于()A.90°B.120°C.180°D.360°11.(2013·大連)如圖,點O在直線AB上,射線OC平分∠DOB.若∠COB=35°,則∠AOD等于()A.35°B.70°C.110°D.145°12.如圖,若∠1+∠3=180°,則圖中與∠1相等的角有__________個,與∠1互補的角有__________個.13.如圖,直線a,b,c兩兩相交,∠1=80°,∠2=2∠3,則∠4=__________.14.如圖所示,直線AB,CD相交于點O,OE平分∠AOC,若∠AOD-∠DOB=60°,則∠EOB=__________.15.如圖所示,AB,CD
5、,EF交于點O,∠1=20°,∠2=60°,求∠BOC的度數(shù).16.如圖所示,直線AB與CD相交于點O,OE平分∠AOD,∠BOC=80°,求∠BOD和∠AOE的度數(shù).17.如圖所示,l1,l2,l3交于點O,∠1=∠2,∠3∶∠1=8∶1,求∠4的度數(shù).挑戰(zhàn)自我18.探究題:(1)三條直線相交,最少有__________個交點,最多有__________個交點,分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補角的對數(shù);(2)四條直線相交,最少有__________個交點,最多有__________個交點,分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補角的對數(shù);(3)依次類推,n條直線相交,最少有_____
6、_____個交點,最多有__________個交點,對頂角有__________對,鄰補角有__________對.參考答案課前預習要點感知1互為反向延長線預習練習1-1∠AOD和∠BOC1-2130°要點感知2反向延長線預習練習2-1∠BOD要點感知3相等預習練習3-150°當堂訓練1.C2.D3.∠2,∠4∠34.B5.40°對頂角相等6.鄰補角互補對頂角相等7.150°8.35°課后作業(yè)9.A10.C11.C12.3413.140°14.150°15.因為∠BOF=∠2=60°,所以∠BOC=∠1+∠BOF=20°+60°=80°.16.因為∠BOD與∠BOC是鄰補角,∠BOC=80°,
7、所以∠BOD=180°—∠BOC=100°.又因為∠AOD與∠BOC是對頂角,所以∠AOD=∠BOC=80°.又因為OE平分∠AOD,所以∠AOE=∠BOC=40°.17.設(shè)∠1=∠2=x°,則∠3=8x°.由∠1+∠2+∠3=180°,得10x=180.解得x=18.所以∠1=∠2=18°.所以∠4=∠1+∠2=2x°=36°.18.(1)13(2)16(3)1n(n-1)2n(n-1)