資源描述:
《基于稀疏表達的圖像恢復算法研究畢業(yè)論文》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學術(shù)論文-天天文庫。
1、摘要摘要圖像去噪即從一張帶有噪聲的圖像中去除其中所包含的附加噪聲。本文主要研究基于稀疏表達的高斯噪聲和椒鹽噪聲去噪模型與算法。由于高斯噪聲和椒鹽噪聲特性的不同,我們分別對高斯噪聲和椒鹽噪聲建立了模型。使得針對不同的噪聲應用相應的模型處理可以得到更好的去噪效果。首先,我們學習與研究基于稀疏表達的高斯噪聲圖像模型。該類算法和模型的基本思想是將原始圖像表達為局部的基元線性組合,并約束線性組合系數(shù)的稀疏性,從而建立解決去噪問題的能量函數(shù),在極小化過程中通過OMP和K-SVD算法優(yōu)化該能量函數(shù)。在實現(xiàn)中,我們可以用離散余弦變換(DCT)構(gòu)造其中的基元組,也可以
2、自適應的學習該基元組。我們實現(xiàn)了該算法,并應用于高斯噪聲圖像的去噪問題。另一方面,我們研究椒鹽噪聲的圖像去噪問題。我們發(fā)現(xiàn),應用經(jīng)典的稀疏表達模型會在處理去除椒鹽噪聲圖像中失效,因此我們提出一種新的基于稀疏性的椒鹽噪聲圖像去噪模型。結(jié)合椒鹽噪聲的特性,我們用更為魯棒的帶權(quán)稀疏表達模型,在使用基元組時采用DCT基元組,并通過OMP方法優(yōu)化該稀疏表達模型。通過實驗表明,該方法相對于經(jīng)典的稀疏表達模型能更好的去除椒鹽噪聲。關(guān)鍵詞:圖像去噪;基元表示;OMP;K-SVD;稀疏編碼31ABSTRACTABSTRACTImagedenoisingistoremo
3、vethenoisesfromagivenobservednoisyimage.ThispapermainlyconcentratesonhowtoremoveGaussiannoisesandpeppernoisesbasedonimagesparserepresentation.BasedonthecharacteristicsofGaussiannoisesandpeppernoises,welearnedandproposedthesparserepresentationbaseddenoisingmodelandalgorithmstoac
4、hieveimagedenoising.Firstly,welearnandinvestigatethesparserepresentationbasedGaussiannoiseremoval.Themainideaistorepresenttheimagebythelocalsparselinearcombinationoveradictionaryofbasis,andthenOMPandK-SVDmethodsareusedtooptimizethededucedenergyfunction.Inimplementation,thedicti
5、onaryofbasiccanbesetasconstantorlearnedadaptivelyfromthenoisyimages.WeimplementedthismodelandappliedittoGaussiannoiseremoval.Secondly,weinvestigatethepeppernoiseremovalbasedonimagesparserepresentation.Wefindthat,thetraditionalsparserepresentationmodelcannothandlethepeppernoiser
6、emovalproblemperfectly.Inthispaper,weproposeanovelweightedsparserepresentationmodeltoremovethepeppernoises,whichusesthedictionaryofDCTbasisandoptimizeitbyOMPalgorithm.ExperimentsshowthatthisproposedmethodcanaccuratelyremovepeppernoiseswithmuchhigherPeakSignaltoNoisesRatio(PSNR)
7、.KEYWORDS:Imagedenoising;Dictionarylearing;OMP;K-SVD;Sparsecoding31目錄目錄1緒論11.1研究背景11.2本文主要研究工作22基于稀疏線性表達的高斯噪聲去噪模型42.1模型介紹42.1.1局部塊上建立去噪模型42.1.2圖像整體上建立去噪模型52.2模型優(yōu)化求解62.2.1采用DCT基元組優(yōu)化模型62.2.2全局學習基元組優(yōu)化模型72.2.3自適應學習基元組優(yōu)化模型72.3迭代求解算法83基于稀疏線性表達的椒鹽噪聲去噪模型23.1模型的建立23.2模型優(yōu)化求解33.3迭代求解算法54實
8、驗64.1高斯噪聲去噪實驗74.2椒鹽噪聲去噪實驗85結(jié)論與展望10參考文獻11附錄12致謝2531目錄31