資源描述:
《全概率公式貝葉斯公式的應(yīng)用及推廣》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、目錄誠信申明·························································3課題及摘要·······················································4引言·····························································51.全概率公式和貝葉斯公式········································61.1全概率公式···
2、············································61.2貝葉斯公式···············································61.3全概率公式和貝葉斯公式的關(guān)系·····························62.全概率公式和貝葉斯公式的應(yīng)用··································72.1商業(yè)市場(chǎng)中的應(yīng)用·········································72.
3、2醫(yī)療診斷中的應(yīng)用·········································932.3實(shí)際比賽中的應(yīng)用·········································103.全概率公式和貝葉斯公式的推廣及應(yīng)用···························123.1全概率公式的推廣·········································123.2貝葉斯公式的推廣···································
4、······153.4全概率和貝葉斯推廣公式的應(yīng)用·····························17總結(jié)····························································19參考文獻(xiàn)························································203河西學(xué)院本科生畢業(yè)論文(設(shè)計(jì))誠信聲明本人鄭重聲明:所呈交的本科畢業(yè)論文(設(shè)計(jì)),是本人在指導(dǎo)老師的指導(dǎo)下,獨(dú)立進(jìn)行研究工作所取得的成果,成果
5、不存在知識(shí)產(chǎn)權(quán)爭議,除文中已經(jīng)注明引用的內(nèi)容外,本論文不含任何其他個(gè)人或集體已經(jīng)發(fā)表或撰寫過的作品成果。對(duì)本文的研究做出重要貢獻(xiàn)的個(gè)人和集體均已在文中以明確方式標(biāo)明。本人完全意識(shí)到本聲明的法律結(jié)果由本人承擔(dān)。作者簽名:二O年月日(打?。?全概率公式和貝葉斯公式的應(yīng)用及推廣摘要:全概率公式和貝葉斯公式是計(jì)算復(fù)雜事件概率的公式,本文對(duì)兩個(gè)公式在醫(yī)療診斷、商業(yè)市場(chǎng)和實(shí)際比賽等的應(yīng)用舉例說明了其用法和使用的概型。為了解決更多的實(shí)際問題,對(duì)兩個(gè)公式進(jìn)行了簡單的推廣及推廣后的應(yīng)用。關(guān)鍵詞:全概率公式;貝葉斯公式;應(yīng)
6、用;推廣Abstract:ThetotalprobabilityformulaandBiasformulaistocalculatethecomplexeventprobabilityformula,theapplicationoftwoformulasinmedicaldiagnosis,thecommercialmarketandtheactualgame,illustratesitsuseandtheuseofprobability.Inordertosolvetheactualproblemmo
7、re,forthetwoformulafortheapplicationandpromotionofsimpleafter.Keywords:TotalProbabilityFormula;BayesFormula;Application;Promotion19引言全概率公式與貝葉斯公式是概率論中重要的公式,主要用于計(jì)算比較復(fù)雜事件的概率,它們實(shí)質(zhì)上是加法公式和乘法公式的綜合運(yùn)用。概率論與數(shù)理統(tǒng)計(jì)是研究隨機(jī)現(xiàn)象統(tǒng)計(jì)規(guī)律性的一門數(shù)學(xué)學(xué)科,起源于17世紀(jì)。發(fā)展到現(xiàn)在,已經(jīng)深入到科學(xué)和社會(huì)的許多領(lǐng)域。從十七世
8、紀(jì)到現(xiàn)在很多國家對(duì)這兩個(gè)公式有了多方面的研究。概率論的重要課題之一,就是希望從已知的簡單事件概率推算出未知的復(fù)雜事件的概率。為了達(dá)到這個(gè)目的,經(jīng)常把一個(gè)復(fù)雜的事件分成若干個(gè)互不相容事件,再通過分別計(jì)算這些簡單事件的概率,最后利用概率的可加性得到最終結(jié)果。這就是全概率公式的基本思想。把上面的整理清楚就是全概率公式。全概率公式是概率論中一個(gè)非常重要的基本公式,通過對(duì)概率論課程的研究,發(fā)現(xiàn)有多內(nèi)容可以進(jìn)一步深化與挖掘,從而得到更廣泛,更簡潔,更實(shí)