資源描述:
《低階線性Kalman濾波實(shí)時(shí)定姿算法的設(shè)計(jì)與實(shí)現(xiàn)》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、2015年第1期導(dǎo)彈與航天運(yùn)載技術(shù)No.12015總第337期MISSILESANDSPACEVEHICLESSumNo.337文章編號(hào):1004-7182(2015)01-0079-05DOI:10.7654/j.issn.1004-7182.20150118低階線性Kalman濾波實(shí)時(shí)定姿算法的設(shè)計(jì)與實(shí)現(xiàn)朱文杰,王廣龍,高鳳岐,喬中濤(軍械工程學(xué)院納米技術(shù)與微系統(tǒng)實(shí)驗(yàn)室,石家莊,050003)摘要:從Kalman濾波定姿算法的實(shí)時(shí)實(shí)現(xiàn)出發(fā),設(shè)計(jì)一種降維Kalman濾波器。推導(dǎo)了加速度計(jì)、磁強(qiáng)計(jì)組合全方位姿態(tài)角的解算公式?;谒脑獢?shù)微分方程,采用四階龍格-庫(kù)塔法對(duì)陀螺儀
2、輸出的角速率數(shù)據(jù)進(jìn)行處理,建立了遞推關(guān)系式,并以姿態(tài)四元數(shù)作為系統(tǒng)的狀態(tài)矢量,構(gòu)成四維Kalman濾波器。在DM3730Cortex-A8處理器平臺(tái)上對(duì)算法進(jìn)行實(shí)現(xiàn)和實(shí)驗(yàn)驗(yàn)證。實(shí)驗(yàn)結(jié)果表明,經(jīng)過(guò)降維處理后的算法,顯著降低算法的實(shí)現(xiàn)復(fù)雜度和計(jì)算量,濾波效果及實(shí)時(shí)性能均達(dá)到預(yù)期的目標(biāo),具有較強(qiáng)的實(shí)用性。關(guān)鍵詞:卡爾曼濾波器;定姿;四元數(shù);Cortex-A8;實(shí)時(shí)性中圖分類號(hào):TP274文獻(xiàn)標(biāo)識(shí)碼:ADesignandImplementationofaLow-orderandLinearKalmanFilteringAlgorithmforReal-timeAttitudeDe
3、terminationZhuWen-jie,WangGuang-long,GaoFeng-qi,QiaoZhong-tao(LabofNanotechnologyandMicro-system,CollegeofMechanicalEngineering,Shijiazhuang,050003)Abstract:AdimensionalityreducedKalmanfilterisdesignedinthispaper,tosatisfythereal-timeimplementationoftheKalmanfilteringalgorithmforattituded
4、etermination.Afullrangeattitudeanglecalculatingformulaisderivedforaccelerometerandmagnetometer.Four-orderRunge-Kuttamethodbasedonquaterniondifferentialequationisusedtodisposetheoutputangularratedatafromgyroscope,andarecurrenceexpressionisestablished.Attitudequaternionischosenasthestatevec
5、torofthesystemtoformafour-dimensionalKalmanfilter.Finally,thewholealgorithmisrealizedandverifiedonDM3730Cortex-A8processorplatform.Theexperimentalresultsshowthatthedimensionalityreducedalgorithmsignificantlyreducestheimplementationcomplexityofthealgorithmandtheamountofcomputation,andthefi
6、lteringeffectandreal-timeperformancereachtheexpectedgoal,soithasgoodpracticality.KeyWords:Kalmanfilter;Attitudedetermination;Quaternion;Cortex-A8;Real-time0引言度、震動(dòng)、磁場(chǎng)等環(huán)境因素影響的缺點(diǎn),需要采用一定姿態(tài)確定在航空航天、軍事、人體運(yùn)動(dòng)學(xué)分析、的處理算法對(duì)其測(cè)量輸出進(jìn)行處理,以消除誤差和干消費(fèi)類電子產(chǎn)品及機(jī)器人等眾多領(lǐng)域有著廣泛的應(yīng)擾。[1~3]用。由微機(jī)電系統(tǒng)(MicroelectroMechanicalSys
7、tem,姿態(tài)估計(jì)常用的算法是Kalman濾波及其各種擴(kuò)[4]MEMS)傳感器組成的微慣性測(cè)量單元(MIMU),輔展和衍生形式,如EKF、UKF、聯(lián)邦Kalman濾波等。以微磁強(qiáng)計(jì)組成的航向姿態(tài)參考系統(tǒng)(AHRS),可實(shí)現(xiàn)文獻(xiàn)[3]使用UKF和互補(bǔ)濾波組合的方法對(duì)姿態(tài)估計(jì)對(duì)被測(cè)對(duì)象的全姿態(tài)參數(shù)進(jìn)行測(cè)量。與傳統(tǒng)的平臺(tái)式定和陀螺儀誤差補(bǔ)償?shù)姆椒ㄟM(jìn)行了研究;文獻(xiàn)[5]、[6]均姿系統(tǒng)及激光陀螺、光纖陀螺等定姿系統(tǒng)相比,AHRS采用與本文類似的傳感器組成結(jié)構(gòu),但其濾波器均為7具有體積小、質(zhì)量輕、功耗低、自主性強(qiáng)、系統(tǒng)實(shí)現(xiàn)簡(jiǎn)階,且都需要事