資源描述:
《2019年高考數(shù)學(xué) 考試大綱解讀 專題04 導(dǎo)數(shù)及其應(yīng)用(含解析)理》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、04導(dǎo)數(shù)及其應(yīng)用考綱原文(十七)導(dǎo)數(shù)及其應(yīng)用1.導(dǎo)數(shù)概念及其幾何意義(1)了解導(dǎo)數(shù)概念的實(shí)際背景.(2)理解導(dǎo)數(shù)的幾何意義.2.導(dǎo)數(shù)的運(yùn)算(1)能根據(jù)導(dǎo)數(shù)定義求函數(shù)y=C,(C為常數(shù)),的導(dǎo)數(shù).(2)能利用下面給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù),能求簡(jiǎn)單的復(fù)合函數(shù)(僅限于形如f(ax+b)的復(fù)合函數(shù))的導(dǎo)數(shù).?常見(jiàn)基本初等函數(shù)的導(dǎo)數(shù)公式:?常用的導(dǎo)數(shù)運(yùn)算法則:法則1:法則2:法則3:3.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(1)了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,
2、會(huì)求函數(shù)的單調(diào)區(qū)間(其中多項(xiàng)式函數(shù)一般不超過(guò)三次).(2)了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值(其中多項(xiàng)式函數(shù)一般不超過(guò)三次);會(huì)求閉區(qū)間上函數(shù)的最大值、最小值(其中多項(xiàng)式函數(shù)一般不超過(guò)三次).4.生活中的優(yōu)化問(wèn)題會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問(wèn)題.5.定積分與微積分基本定理(1)了解定積分的實(shí)際背景,了解定積分的基本思想,了解定積分的概念.(2)了解微積分基本定理的含義.與2018年考綱相比沒(méi)什么變化,而且這部分內(nèi)容作為高考的必考內(nèi)容,在2019年的高考中預(yù)計(jì)仍會(huì)以“
3、一小一大”的格局呈現(xiàn),內(nèi)容涉及導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值(最值)、零點(diǎn),證明不等式等.小題難度可大可小,大題難度偏大,且近幾年導(dǎo)數(shù)大題的第一問(wèn)起點(diǎn)較高,應(yīng)引起高度重視.全國(guó)卷命題不回避熱點(diǎn)和經(jīng)典問(wèn)題,預(yù)計(jì)壓軸題仍會(huì)以極值(最值)、零點(diǎn)問(wèn)題,證明不等式等方式切入.考向一利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性樣題1(2018新課標(biāo)全國(guó)Ⅰ理科)已知函數(shù).(1)討論的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),證明:.【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.【解析】(1)的定義域?yàn)椋?(i)若,則,當(dāng)且僅當(dāng),時(shí),所以
4、在單調(diào)遞減.(ii)若,令得,或.當(dāng)時(shí),;當(dāng)時(shí),.所以在單調(diào)遞減,在單調(diào)遞增.設(shè)函數(shù),由(1)知,在單調(diào)遞減,又,從而當(dāng)時(shí),.所以,即.考向二利用導(dǎo)數(shù)研究函數(shù)的極值問(wèn)題樣題2(2017新課標(biāo)全國(guó)Ⅱ理科)若是函數(shù)的極值點(diǎn),則的極小值為A.B.C.D.1【答案】A【解析】由題可得,因?yàn)椋?,,故,令,解得或,所以在上單調(diào)遞增,在上單調(diào)遞減,所以的極小值為,故選A.【名師點(diǎn)睛】(1)可導(dǎo)函數(shù)y=f(x)在點(diǎn)x0處取得極值的充要條件是f′(x0)=0,且在x0左側(cè)與右側(cè)f′(x)的符號(hào)不同;(2)若f(x
5、)在(a,b)內(nèi)有極值,那么f(x)在(a,b)內(nèi)絕不是單調(diào)函數(shù),即在某區(qū)間上單調(diào)增或減的函數(shù)沒(méi)有極值.樣題3(2018新課標(biāo)全國(guó)Ⅲ理科)已知函數(shù).(1)若,證明:當(dāng)時(shí),;當(dāng)時(shí),;(2)若是的極大值點(diǎn),求.【答案】(1)見(jiàn)解析;(2).【解析】(1)當(dāng)時(shí),,.設(shè)函數(shù),則.當(dāng)時(shí),;當(dāng)時(shí),.故當(dāng)時(shí),,且僅當(dāng)時(shí),,從而,且僅當(dāng)時(shí),.所以在單調(diào)遞增.又,故當(dāng)時(shí),;當(dāng)時(shí),.(2)(i)若,由(1)知,當(dāng)時(shí),,這與是的極大值點(diǎn)矛盾.(ii)若,設(shè)函數(shù).由于當(dāng)時(shí),,故與符號(hào)相同.又,故是的極大值點(diǎn)當(dāng)且僅當(dāng)是的極大
6、值點(diǎn)..如果,則當(dāng),且時(shí),,故不是的極大值點(diǎn).如果,則存在根,故當(dāng),且時(shí),,所以不是的極大值點(diǎn).【答案】0【解析】.樣題7執(zhí)行如圖所示的程序框圖,輸出的T的值為.?【答案】樣題8如圖,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(2,4),函數(shù)f(x)=x2.若在矩形ABCD內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率等于.【答案】【解析】依題意知點(diǎn)D的坐標(biāo)為(1,4),所以矩形ABCD的面積S=1×4=4,陰影部分的面積S陰影=,根據(jù)幾何概型的概率計(jì)算公式得,所求的概率P=.