資源描述:
《談小學(xué)數(shù)學(xué)教學(xué)中直覺思維能力的培養(yǎng).doc》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫(kù)。
1、談小學(xué)數(shù)學(xué)教學(xué)中直覺思維能力的培養(yǎng)[摘要]直覺思維能力的培養(yǎng)在小學(xué)數(shù)學(xué)教學(xué)中相當(dāng)重要,教師要對(duì)其有到位的理解,并且在教學(xué)實(shí)踐中應(yīng)努力將具當(dāng)成教學(xué)主線,通過(guò)具體細(xì)微的教學(xué)策略,將這些理念變成現(xiàn)實(shí).[關(guān)鍵詞]小學(xué)數(shù)學(xué);直覺思維;培養(yǎng)良好的數(shù)學(xué)直覺是小學(xué)數(shù)學(xué)教學(xué)追求的重要目標(biāo),這可以從兩個(gè)方面來(lái)尋找理由:一是數(shù)學(xué)教學(xué)的邏輯關(guān)系.從小學(xué)數(shù)學(xué)為學(xué)生提供最簡(jiǎn)單的數(shù)與形時(shí),其最終目的是提高學(xué)生的數(shù)學(xué)素養(yǎng),而其屮一個(gè)重要組成部分就是直覺思維能力;二是數(shù)學(xué)學(xué)習(xí)中優(yōu)秀學(xué)生的表現(xiàn).在實(shí)際教學(xué)中可以注意到,優(yōu)秀學(xué)生往往表現(xiàn)在數(shù)學(xué)直覺思維比較優(yōu)秀,即面臨一個(gè)復(fù)雜的數(shù)學(xué)問
2、題時(shí),總能下意識(shí)地找到最佳解題思路,而相比之下數(shù)學(xué)學(xué)習(xí)比較困難的學(xué)生在這一方面就比較薄弱.研究表明,數(shù)學(xué)直覺思維是可以靠后天的培養(yǎng)形成的,因此,在H常教學(xué)過(guò)程中,除了課程標(biāo)準(zhǔn)規(guī)定的教學(xué)目標(biāo)之外,另一個(gè)隱性的重點(diǎn)就是培養(yǎng)學(xué)生良好的直覺思維.那么,什么是直覺思維呢?其在小學(xué)數(shù)學(xué)教學(xué)中有什么表現(xiàn)呢?又應(yīng)當(dāng)采用什么樣的培養(yǎng)策略呢?結(jié)合對(duì)這些問題的思考,筆者在教學(xué)中進(jìn)行了不斷總結(jié),取得了一些收獲.現(xiàn)將這些收獲整理成文字,供小學(xué)數(shù)學(xué)教學(xué)的同行們批評(píng)指正.直覺思維及其在小學(xué)數(shù)學(xué)中的體現(xiàn)人們根據(jù)思維過(guò)程的復(fù)雜性將思維分成邏輯思維與直覺思維兩種.為了對(duì)這兩種思維
3、有所理解與比較,不妨以小學(xué)數(shù)學(xué)中的一些實(shí)例來(lái)輔助理解.邏輯思維強(qiáng)調(diào)思維的嚴(yán)謹(jǐn)性,要求思維的每一步都有嚴(yán)格的邏輯關(guān)系,而這些邏輯關(guān)系與相應(yīng)的數(shù)學(xué)法則乂是相聯(lián)系的,比如訃學(xué)生計(jì)算5X4+3X4,學(xué)生就必須嚴(yán)格按照先乘除后加減的順序進(jìn)行計(jì)算,還必須正確地運(yùn)用乘法和加法運(yùn)算法則,才能得到正確的結(jié)果.在這個(gè)過(guò)程中,每一個(gè)步驟都必須準(zhǔn)確無(wú)誤.而在實(shí)際教學(xué)中,當(dāng)教師要求學(xué)生嚴(yán)格寫出每一步時(shí),實(shí)際上也是在培養(yǎng)學(xué)生的邏輯思維能力?而直覺思維則不同,直覺思維對(duì)應(yīng)的是學(xué)生在面對(duì)復(fù)雜問題時(shí)能夠迅速地發(fā)現(xiàn)解題思路,這個(gè)思路的大方向往往都是正確的,但具體到每一個(gè)細(xì)節(jié)又一般
4、是模糊的,因而簡(jiǎn)約性、跳躍性是直覺思維的顯著特點(diǎn).譬如,在上面那個(gè)例子中,有學(xué)生就能敏銳地發(fā)現(xiàn)其實(shí)質(zhì)為5個(gè)4加上3個(gè)4,那結(jié)果就應(yīng)當(dāng)是8個(gè)4!這個(gè)過(guò)程在學(xué)生的思維中是迅即發(fā)生的,思維的速度遠(yuǎn)遠(yuǎn)大于書寫的速度.在實(shí)際教學(xué)屮,對(duì)比邏輯思維與形象思維,可以發(fā)現(xiàn)一個(gè)明顯的特點(diǎn),即采用前者的學(xué)生往往只顧及問題的某一個(gè)細(xì)節(jié),當(dāng)這個(gè)細(xì)節(jié)完成之后他們才會(huì)去關(guān)注下一個(gè)細(xì)節(jié).仍以上述例子為例,部分學(xué)生在粗略地看到本式中既有乘法又有加法后,頭腦中反應(yīng)出老師所強(qiáng)調(diào)的計(jì)算順序,然后分兩步進(jìn)行計(jì)算一一先算前一個(gè)乘式的結(jié)果,再算示一個(gè)乘式的結(jié)果.而采用直覺思維方式的學(xué)生,往
5、往不是粗略地關(guān)注這一式子,而是對(duì)式子試圖有一個(gè)整體的認(rèn)識(shí)一一發(fā)現(xiàn)4這個(gè)共同的乘數(shù),這就催生了直覺思維.還有一個(gè)更重要的方面,那就是在小學(xué)數(shù)學(xué)教學(xué)中,直覺思維的重要性往往超越數(shù)學(xué)知識(shí)層面,具直指數(shù)學(xué)知識(shí)之間千絲萬(wàn)縷的聯(lián)系,直接反應(yīng)了學(xué)生對(duì)數(shù)學(xué)知識(shí)的理解水平.因此,在小學(xué)數(shù)學(xué)教學(xué)中,要著重設(shè)計(jì)一些綜合性強(qiáng)、具有一定復(fù)雜性的問題,以培養(yǎng)學(xué)生的直覺思維能力.那么,這種直覺思維能力的培養(yǎng)需要哪些策略呢?小學(xué)數(shù)學(xué)教學(xué)中直覺思維的培養(yǎng)策略從以上論述中可以發(fā)現(xiàn),直覺思維的培養(yǎng)關(guān)鍵在于給學(xué)生提供適合的復(fù)雜情境,而此過(guò)程中教師的教學(xué)策略也是一個(gè)重要因素.下面著重闡
6、述.其一,培養(yǎng)學(xué)牛從宏觀視角審視復(fù)雜問題.直覺思維能否有效,關(guān)鍵在于學(xué)生對(duì)復(fù)雜問題的宏觀把握,在于學(xué)生全面地觀察問題之后能否從整體角度思考解決問題的途徑.事實(shí)上,這是一個(gè)思考策略的問題,是先整體后局部的思維方式.在小學(xué)數(shù)學(xué)教學(xué)中,有一類習(xí)題很難培養(yǎng)學(xué)生的這一思維習(xí)慣,那就是簡(jiǎn)便運(yùn)算題.這類習(xí)題大家比較熟悉,此處就不贅述.值得一提的是,這種思維習(xí)慣的培養(yǎng)可以采用專題的形式進(jìn)行,即跟學(xué)生明確強(qiáng)調(diào)在數(shù)學(xué)問題的解決中,要先進(jìn)行整體思考,再進(jìn)行局部思考.為了幫學(xué)生建立先局部后整體的不足,有時(shí)可以采用一些有趣的方式進(jìn)行.筆者就曾經(jīng)嘗試過(guò)這樣的教學(xué)策略:編制
7、30道難度適中的數(shù)學(xué)題讓學(xué)生完成,其中最后一題的前面寫明一一如果看到這一題,那前面29題都不需要做.實(shí)踐表明,無(wú)論是屮年級(jí)的學(xué)生還是高年級(jí)的學(xué)生,往往會(huì)“屮計(jì)”,這一中計(jì)的體驗(yàn)過(guò)程,可以幫學(xué)生形成強(qiáng)烈的先整體后局部的思維方式.其二,在學(xué)生習(xí)慣了宏觀視角之后,直覺思維能力的培養(yǎng)重點(diǎn)就是學(xué)生對(duì)問題中各個(gè)因素的聯(lián)系、發(fā)現(xiàn)了?也就是說(shuō),直覺思維能力體現(xiàn)在學(xué)生的復(fù)雜問題中,能夠有效地捕捉不同因素之間的關(guān)系,并且從中梳理出這些因素之間的聯(lián)系,再通過(guò)數(shù)學(xué)關(guān)系將這些聯(lián)系明確化、簡(jiǎn)約化,從而讓復(fù)朵問題變得簡(jiǎn)單.例如,學(xué)完乘法知識(shí)Z后,可以通過(guò)相對(duì)復(fù)朵的、具有挑戰(zhàn)
8、性的問題來(lái)培養(yǎng)學(xué)生對(duì)包括乘法在內(nèi)的復(fù)雜運(yùn)算的把握能力.如24X3.6+7.6X36,對(duì)于這樣的問題,可以讓學(xué)生分別通過(guò)邏輯思維和直覺思維進(jìn)行計(jì)算,比較