資源描述:
《藥物非房室模型分析.ppt》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、NONCOMPARTMENTALANALYSISDeficienciesofcompartmentalanalysis:Lackofmeaningfulphysiologicalbasisforderivedparameters.Lackofrigorouscriteriatodetermine#ofcompartmentsnecessarytodescribedisposition.Lackofabilitytoelucidateorganspecificelimination.Inabilitytorelatederivedparameterst
2、oquantifiablephysiologicalparameters.Inabilitytopredictimpactofpathophysiology.Inabilitytoprovideinsightintomechanismofdrug-druganddrug-nutrientinteractions.Highlysensitivetosamplingfrequency.1GENERALPRINCIPLESOFSTATISTICALMOMENTSMOMENT:Amathematicaldescriptionofadiscretedistri
3、bution.STATISTICALMOMENTS:UtilizedinchemicalengineeringtodescribeflowdataFirstappliedtobiologicalsystemsbyPerlandSamuelin1969todescribethekineticsofcholesterol2ExamplesofStatisticalMomentUsageInstatisticsInphysicsM0NweightM1(mean)CenterofmassM2(variance)MomentofinertiaM3(skewne
4、ss)M4(kurtosis)3Instatistics,themeanisameasureofasamplemeanandisactuallyanestimateofthetruepopulationmean.Inpharmacokinetics,wecancalculatethemomentofthetheoreticalprobabilitydensityfunction(i.e.,thesolutionofadifferentialequationdescribingtheplasmaconcentrationtimedata),orweca
5、ncalculatemomentsfrommeasuredplasmaconcentration-timedata.Thesecurvesarereferredtoassamplemomentsandareestimatesofthetruecurves.4AssumeatheoreticalrelationshipofC(t)asafunctionoftime.Thenon-normalizedmoments,Sr,abouttheoriginarecalculatedas:5Non-normalizedmomentsKineticparamete
6、rAUCAreaunderthecurveAUMCAreaunderthemomentcurve6From:RowlandM,TozerTN.ClinicalPharmacokinetics–ConceptsandApplications,3rdedition,WilliamsandWilkins,1995,p.487.7NormalizedmomentsKineticparameterFirstmoment:MRTMeanresidencetime8AREADETERMINATIONA.IntegrationofSpecificFunctionMu
7、stelucidatethespecificfunctionInfluencedbythequalityofthefit9B.NumericalIntegrationLineartrapezoidalLogtrapezoidal10B.NumericalIntegrationLineartrapezoidal11B.NumericalIntegrationLineartrapezoidalAdvantages:Simple(cancalculatebyhand)Disadvantages:Assumesstraightlinebtwndatapoin
8、tsIfcurveissteep,errormaybelargeUnderoroverestimatedep