資源描述:
《數(shù)學(xué)發(fā)展史之負(fù)數(shù)小史.doc》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、數(shù)學(xué)發(fā)展史之負(fù)數(shù)小史奇與偶,有界與無界,善與惡,左與右,一與眾,雄與雌,直與曲,正方與長方,亮與暗,動與靜。上面所寫的這些對立概念被兩千多年前的著名的“畢達(dá)哥拉絲學(xué)派”認(rèn)為是整個宇宙的10個對立概念。因此兩千多年以前人們就認(rèn)識到,世界是由許多相互矛盾的事物組成的。你要認(rèn)識這個世界,改造這個世界,就要從這些矛盾的事物入手。既然這是萬物的普遍規(guī)律,那么數(shù)學(xué)也要遵守。下面我們就專門談?wù)勥@個問題。負(fù)數(shù)的發(fā)現(xiàn)人們在生活中經(jīng)常會遇到各種相反意義的量。比如,在記帳時有余有虧;在計算糧倉存米時,有時要記進(jìn)糧食,有時要記出糧食。為
2、了方便,人們就考慮了相反意義的數(shù)來表示。于是人們引入了正負(fù)數(shù)這個概念,把余錢進(jìn)糧食記為正,把虧錢、出糧食記為負(fù)。可見正負(fù)數(shù)是生產(chǎn)實踐中產(chǎn)生的。據(jù)史料記載,早在兩千多年前,我國就有了正負(fù)數(shù)的概念,掌握了正負(fù)數(shù)的運算法則。人們計算的時候用一些小竹棍擺出各種數(shù)字來進(jìn)行計算。這些小竹棍叫做“算籌”算籌也可以用骨頭和象牙來制作。我國三國時期的學(xué)者劉徽在建立負(fù)數(shù)的概念上有重大貢獻(xiàn)。劉徽首先給出了正負(fù)數(shù)的定義,他說:“今兩算得失相反,要令正負(fù)以名之?!币馑际钦f,在計算過程中遇到具有相反意義的量,要用正數(shù)和負(fù)數(shù)來區(qū)分它們。劉徽第
3、一次給出了區(qū)分正負(fù)數(shù)的方法。他說:“正算赤,負(fù)算黑;否則以邪正為異”意思是說,用紅色的小棍擺出的數(shù)表示正數(shù),用黑色的小棍擺出的數(shù)表示負(fù)數(shù);也可以用斜擺的小棍表示負(fù)數(shù),用正擺的小棍表示正數(shù)。我國古代著名的數(shù)學(xué)專著《九章算術(shù)》(成書于公元一世紀(jì))中,最早提出了正負(fù)數(shù)加減法的法則:“正負(fù)數(shù)曰:同名相除,異名相益,正無入負(fù)之,負(fù)無入正之;其異名相除,同名相益,正無入正之,負(fù)無入負(fù)之?!边@里的“名”就是“號”,“除”就是“減”,“相益”、“相除”就是兩數(shù)的絕對值“相加”、“相減”,“無”就是“零”。用現(xiàn)在的話說就是:“正負(fù)
4、數(shù)的加減法則是:同符號兩數(shù)相減,等于其絕對值相減,異號兩數(shù)相減,等于其絕對值相加。零減正數(shù)得負(fù)數(shù),零減負(fù)數(shù)得正數(shù)。異號兩數(shù)相加,等于其絕對值相減,同號兩數(shù)相加,等于其絕對值相加。零加正數(shù)等于正數(shù),零加負(fù)數(shù)等于負(fù)數(shù)?!边@段關(guān)于正負(fù)數(shù)的運算法則的敘述是完全正確的,與現(xiàn)在的法則完全一致!負(fù)數(shù)的引入是我國數(shù)學(xué)家杰出的貢獻(xiàn)之一。用不同顏色的數(shù)表示正負(fù)數(shù)的習(xí)慣,一直保留到現(xiàn)在。現(xiàn)在一般用紅色表示負(fù)數(shù),報紙上登載某國經(jīng)濟(jì)上出現(xiàn)赤字,表明支出大于收入,財政上虧了錢。負(fù)數(shù)是正數(shù)的相反數(shù)。在實際生活中,我們經(jīng)常用正數(shù)和負(fù)數(shù)來表示意義
5、相反的兩個量。夏天武漢氣溫高達(dá)42°C你會想到武漢的確象火爐,冬天哈爾濱氣溫-32°C一個負(fù)號讓你感到北方冬天的寒冷。在現(xiàn)今的中小學(xué)教材中,負(fù)數(shù)的引入,是通過算術(shù)運算的方法引入的:只需以一個較小的數(shù)減去一個較大的數(shù),便可以得到一個負(fù)數(shù)。這種引入方法可以在某種特殊的問題情景中給出負(fù)數(shù)的直觀理解。而在古代數(shù)學(xué)中,負(fù)數(shù)常常是在代數(shù)方程的求解過程中產(chǎn)生的。對古代巴比倫的代數(shù)研究發(fā)現(xiàn),巴比倫人在解方程中沒有提出負(fù)數(shù)根的概念,即不用或未能發(fā)現(xiàn)負(fù)數(shù)根的概念。3世紀(jì)的希臘學(xué)者丟番圖的著作中,也只給出了方程的正根。然而,在中國的傳
6、統(tǒng)數(shù)學(xué)中,已較早形成負(fù)數(shù)和相關(guān)的運算法則。除《九章算術(shù)》定義有關(guān)正負(fù)運算方法外,東漢末年劉烘(公元206年)、宋代揚(yáng)輝(1261年)也論及了正負(fù)數(shù)加減法則,都與九章算術(shù)所說的完全一致。特別值得一提的是,元代朱世杰除了明確給出了正負(fù)數(shù)同號異號的加減法則外,還給出了關(guān)于正負(fù)數(shù)的乘除法則。負(fù)數(shù)在國外得到認(rèn)識和被承認(rèn),較之中國要晚得多。在印度,數(shù)學(xué)家婆羅摩笈多于公元628年才認(rèn)識負(fù)數(shù)可以是二次方程的根。而在歐洲14世紀(jì)最有成就的法國數(shù)學(xué)家丘凱把負(fù)數(shù)說成是荒謬的數(shù)。直到十七世紀(jì)荷蘭人日拉爾(1629年)才首先認(rèn)識和使用負(fù)數(shù)
7、解決幾何問題。與中國古代數(shù)學(xué)家不同,西方數(shù)學(xué)家更多的是研究負(fù)數(shù)存在的合理性。16、17世紀(jì)歐洲大多數(shù)數(shù)學(xué)家不承認(rèn)負(fù)數(shù)是數(shù)。帕斯卡認(rèn)為從0減去4是純粹的胡說。帕斯卡的朋友阿潤德提出一個有趣的說法來反對負(fù)數(shù),他說(-1):1=1:(-1),那么較小的數(shù)與較大的數(shù)的比怎么能等于較大的數(shù)與較小的數(shù)比呢?直到1712年,連萊布尼茲也承認(rèn)這種說法合理。英國數(shù)學(xué)家瓦里承認(rèn)負(fù)數(shù),同時認(rèn)為負(fù)數(shù)小于零而大于無窮大(1655年)。英國著名代數(shù)學(xué)家德。摩根在1831年仍認(rèn)為負(fù)數(shù)是虛構(gòu)的。他用以下的例子說明這一點:“父親56歲,其子29歲
8、。問何時父親年齡將是兒子的二倍?”他列方程56+x=2(29+x),并解得x=-2.他稱此解是荒唐的。當(dāng)然,歐洲18世紀(jì)排斥負(fù)數(shù)的人已經(jīng)不多了。隨著19世紀(jì)整數(shù)理論基礎(chǔ)的建立,負(fù)數(shù)在邏輯上的合理性才真正建立。