資源描述:
《TSP的改進(jìn)蟻群算法求解及其仿真研究.pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫(kù)。
1、第37卷第8期合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)Vo1.37No.82014年8月JOURNALOFHEFEIUNIVERSITYOFTECHNOLOGYAug.2014Doi:10.3969/j.issn.1003—5060.2014.08.007TSP的改進(jìn)蟻群算法求解及其仿真研究楊再甫,黃友銳,曲立國(guó)葛平平(安徽理工大學(xué)電氣與信息工程學(xué)院,安徽淮南232001)摘要:螞蟻數(shù)目是影響蟻群算法性能的重要參數(shù),常規(guī)蟻群算法在求解TSP時(shí)易于陷入局部最優(yōu)解。文章針對(duì)該問(wèn)題,提出了一種螞蟻數(shù)目動(dòng)態(tài)改變的蟻群算法,即每次周游時(shí)的螞蟻數(shù)目是在一個(gè)范圍內(nèi)隨機(jī)取值,該改進(jìn)
2、算法借用遺傳算法中的排序選擇策略對(duì)每次遍歷時(shí)的螞蟻位置進(jìn)行初始化;分別對(duì)常規(guī)蟻群算法的TSP求解和改進(jìn)蟻群算法的TSP求解進(jìn)行了原理闡述,并對(duì)2種算法求解TSP的結(jié)果進(jìn)行了Matlab仿真。對(duì)比仿真結(jié)果表明,改進(jìn)的算法在求解TsP時(shí),能夠有效地跳出局部最優(yōu)解,并能很好地收斂,它比常規(guī)蟻群算法的性能要優(yōu)。關(guān)鍵詞:常規(guī)蟻群算法;改進(jìn)蟻群算法;旅行商問(wèn)題;局部最優(yōu)解;動(dòng)態(tài)螞蟻數(shù)目中圖分類(lèi)號(hào):TP18文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1003—5060(2014)08-0928—05SolutionofTSPbasedonimprovedantcolonyalgorithm
3、anditssimulationYANGZai—fu,HUANGYou-rui,QULi-guo,GEPing-ping(SchoolofElectricalandInformationEngineering,AnhuiUniversityofScienceandTechnology,Huainan232001,China)Abstract:Thenumberofantsisallimportantparameterthataffectstheperformanceofantcolonyal—gorithm.Astheconventionalantcolo
4、nyalgorithmforsolvingtravellingsalesmanproblem(TSP)iseasytofallintoalocaloptimalsolution,anantcolonyalgorithmbasedondynamicchangesofthenumberofantsiSproposed。inwhicheachtravelingiStobewithrandomnumberofantsinacertainrange.Besides,therankingselectionpolicyofgeneticalgorithmisusedto
5、initializethelocationofantseachtimewhentraveling.ThetheoriesoftheconventionalantcolonyalgorithmandtheimprovedantcolonyalgorithmforsolvingTSParebothexpatiated,andtheresultsofthementionedalgorithmsforsolvingTSParesimulatedbyMatlab.Thesimulationresultsshowthattheperformanceoftheim—pr
6、ovedalgorithmisbetterthanthatoftheconventionalalgorithmsincetheimprovedalgorithmcanef—fectivelyjumpoutoflocaloptimalsolutionandhasbetterconvergenceperformance.Keywords:conventionalantcolonyalgorithm;improvedantcolonyalgorithm;travellingsalesmanproblem(TSP);localoptimalsolution;dyn
7、amicnumberofantsTSP(travellingsalesmanproblem)的任務(wù)是配送過(guò)程中的路徑選擇問(wèn)題,結(jié)果很實(shí)用;文獻(xiàn)求一條從起點(diǎn)出發(fā)周游所有城市一次又回到起點(diǎn)[3]采用蟻群算法改善機(jī)器人路徑規(guī)劃的學(xué)習(xí)效的最短路徑,該問(wèn)題求解繁瑣。蟻群算法(ant率;文獻(xiàn)[4]將蟻群算法用于建筑災(zāi)難現(xiàn)場(chǎng)的逃生colonyalgorithm)是一種群智能優(yōu)化算法,由文路徑規(guī)劃,該方法能夠有效找出逃生路徑,提高救獻(xiàn)[13首次提出,并用于TSP的求解。援效率。上述都是蟻群算法求解的TSP的具體’近年來(lái),文獻(xiàn)[2]采用改進(jìn)蟻群算法解決物流應(yīng)用場(chǎng)合,TSP的
8、應(yīng)用場(chǎng)合還有很多。但蟻群算收稿日期:2013—09—02;修回日期