資源描述:
《小學速算與巧算.doc》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、兩個數(shù)之和等于10,則稱這兩個數(shù)互補。在整數(shù)乘法運算中,常會遇到像72×78,26×86等被乘數(shù)與乘數(shù)的十位數(shù)字相同或互補,或被乘數(shù)與乘數(shù)的個位數(shù)字相同或互補的情況。72×78的被乘數(shù)與乘數(shù)的十位數(shù)字相同、個位數(shù)字互補,這類式子我們稱為“頭相同、尾互補”型;26×86的被乘數(shù)與乘數(shù)的十位數(shù)字互補、個位數(shù)字相同,這類式子我們稱為“頭互補、尾相同”型。計算這兩類題目,有非常簡捷的速算方法,分別稱為“同補”速算法和“補同”速算法。例1(1)76×74=?(2)31×39=?分析與解:本例兩題都是“頭相同、尾互補”類型。(1)由乘法分配律和結(jié)合律,得到76×74=(7+6)
2、×(70+4)=(70+6)×70+(7+6)×4=70×70+6×70+70×4+6×4=70×(70+6+4)+6×4=70×(70+10)+6×4=7×(7+1)×100+6×4。于是,我們得到下面的速算式:(2)與(1)類似可得到下面的速算式:由例1看出,在“頭相同、尾互補”的兩個兩位數(shù)乘法中,積的末兩位數(shù)是兩個因數(shù)的個位數(shù)之積(不夠兩位時前面補0,如1×9=09),積中從百位起前面的數(shù)是被乘數(shù)(或乘數(shù))的十位數(shù)與十位數(shù)加1的乘積。“同補”速算法簡單地說就是:積的末兩位是“尾×尾”,前面是“頭×(頭+1)”。我們在三年級時學到的15×15,25×25,…,9
3、5×95的速算,實際上就是“同補”速算法。例2(1)78×38=?(2)43×63=?分析與解:本例兩題都是“頭互補、尾相同”類型。(1)由乘法分配律和結(jié)合律,得到78×38=(70+8)×(30+8)=(70+8)×30+(70+8)×8=70×30+8×30+70×8+8×8=70×30+8×(30+70)+8×8=7×3×100+8×100+8×8=(7×3+8)×100+8×8。于是,我們得到下面的速算式:(2)與(1)類似可得到下面的速算式:由例2看出,在“頭互補、尾相同”的兩個兩位數(shù)乘法中,積的末兩位數(shù)是兩個因數(shù)的個位數(shù)之積(不夠兩位時前面補0,如3×3
4、=09),積中從百位起前面的數(shù)是兩個因數(shù)的十位數(shù)之積加上被乘數(shù)(或乘數(shù))的個位數(shù)。“補同”速算法簡單地說就是:積的末兩位數(shù)是“尾×尾”,前面是“頭×頭+尾”。例1和例2介紹了兩位數(shù)乘以兩位數(shù)的“同補”或“補同”形式的速算法。當被乘數(shù)和乘數(shù)多于兩位時,情況會發(fā)生什么變化呢?我們先將互補的概念推廣一下。當兩個數(shù)的和是10,100,1000,…時,這兩個數(shù)互為補數(shù),簡稱互補。如43與57互補,99與1互補,555與445互補。在一個乘法算式中,當被乘數(shù)與乘數(shù)前面的幾位數(shù)相同,后面的幾位數(shù)互補時,這個算式就是“同補”型,即“頭相同,尾互補”型。例如,因為被乘數(shù)與乘數(shù)的前兩位
5、數(shù)相同,都是70,后兩位數(shù)互補,77+23=100,所以是“同補”型。又如,等都是“同補”型。當被乘數(shù)與乘數(shù)前面的幾位數(shù)互補,后面的幾位數(shù)相同時,這個乘法算式就是“補同”型,即“頭互補,尾相同”型。例如,等都是“補同”型。在計算多位數(shù)的“同補”型乘法時,例1的方法仍然適用。例3(1)702×708=?(2)1708×1792=?解:(1)(2)計算多位數(shù)的“同補”型乘法時,將“頭×(頭+1)”作為乘積的前幾位,將兩個互補數(shù)之積作為乘積的后幾位。注意:互補數(shù)如果是n位數(shù),則應(yīng)占乘積的后2n位,不足的位補“0”。在計算多位數(shù)的“補同”型乘法時,如果“補”與“同”,即“頭
6、”與“尾”的位數(shù)相同,那么例2的方法仍然適用(見例4);如果“補”與“同”的位數(shù)不相同,那么例2的方法不再適用,因為沒有簡捷實用的方法,所以就不再討論了。例42865×7265=?解:練習2計算下列各題:1.68×62;2.93×97;3.27×87;4.79×39;5.42×62;6.603×607;7.693×607;8.4085×6085。