資源描述:
《離散型隨機(jī)變量的方差教案定稿.docx》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫(kù)。
1、2.3.2離散型隨機(jī)變量的方差一、教學(xué)目標(biāo):知識(shí)與技能:了解離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差的意義,會(huì)根據(jù)離散型隨機(jī)變量的分布列求出方差或標(biāo)準(zhǔn)差。過(guò)程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會(huì)應(yīng)用上述公式計(jì)算有關(guān)隨機(jī)變量的方差。情感、態(tài)度與價(jià)值觀:承前啟后,感悟數(shù)學(xué)與生活的和諧之美,體現(xiàn)數(shù)學(xué)的文化功能與人文價(jià)值。二、教學(xué)重難點(diǎn)教學(xué)重點(diǎn):離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差教學(xué)難點(diǎn):比較兩個(gè)隨機(jī)變量的期望與方差的大小,從而解決實(shí)際問(wèn)題三、教學(xué)過(guò)程復(fù)習(xí)引入:1隨機(jī)變量:如果隨機(jī)試驗(yàn)的結(jié)果可以用一個(gè)變量來(lái)表示,那么這樣的變量
2、叫做隨機(jī)變量隨機(jī)變量常用希臘字母ξ、η等表示。2離散型隨機(jī)變量:對(duì)于隨機(jī)變量可能取的值,可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量。3連續(xù)型隨機(jī)變量:對(duì)于隨機(jī)變量可能取的值,可以取某一區(qū)間內(nèi)的一切值,這樣的變量就叫做連續(xù)型隨機(jī)變量。4離散型隨機(jī)變量與連續(xù)型隨機(jī)變量的區(qū)別與聯(lián)系:離散型隨機(jī)變量與連續(xù)型隨機(jī)變量都是用變量表示隨機(jī)試驗(yàn)的結(jié)果;但是離散型隨機(jī)變量的結(jié)果可以按一定次序一一列出,而連續(xù)性隨機(jī)變量的結(jié)果不可以一一列出。5分布列:ξx1x2…xi…PP1P2…Pi…6分布列的兩個(gè)性質(zhì):⑴Pi≥0,i=1,2,…;⑵P1+P2+…=1.7二項(xiàng)分布:ξ~B(n
3、,p),并記=b(k;n,p).ξ01…k…nP……8幾何分布:g(k,p)=,其中k=0,1,2,…,.ξ123…k…P……9數(shù)學(xué)期望:一般地,若離散型隨機(jī)變量ξ的概率分布為ξx1x2…xn…Pp1p2…pn…則稱……為ξ的數(shù)學(xué)期望,簡(jiǎn)稱期望。講解新課:1方差:對(duì)于離散型隨機(jī)變量ξ,如果它所有可能取的值是,,…,,…,且取這些值的概率分別是,,…,,…,那么,=++…++…稱為隨機(jī)變量ξ的均方差,簡(jiǎn)稱為方差,式中的是隨機(jī)變量ξ的期望.2標(biāo)準(zhǔn)差:的算術(shù)平方根叫做隨機(jī)變量ξ的標(biāo)準(zhǔn)差,記作.3方差的性質(zhì):(1);(2);(3)若ξ~B(n,p),則np(1-p)4其它:⑴隨
4、機(jī)變量ξ的方差的定義與一組數(shù)據(jù)的方差的定義式是相同的;⑵隨機(jī)變量ξ的方差、標(biāo)準(zhǔn)差也是隨機(jī)變量ξ的特征數(shù),它們都反映了隨機(jī)變量取值的穩(wěn)定與波動(dòng)、集中與離散的程度;⑶標(biāo)準(zhǔn)差與隨機(jī)變量本身有相同的單位,所以在實(shí)際問(wèn)題中應(yīng)用更廣泛。例題講解:例1.隨機(jī)拋擲一枚質(zhì)地均勻的骰子,求向上一面的點(diǎn)數(shù)的均值、方差和標(biāo)準(zhǔn)差。解:拋擲散子所得點(diǎn)數(shù)X的分布列為ξ123456P從而;.例2.有甲乙兩個(gè)單位都愿意聘用你,而你能獲得如下信息:甲單位不同職位月工資X1/元1200140016001800獲得相應(yīng)職位的概率P10.40.30.20.1乙單位不同職位月工資X2/元1000140018002
5、000獲得相應(yīng)職位的概率P20.40.30.20.1根據(jù)工資待遇的差異情況,你愿意選擇哪家單位?解:根據(jù)月工資的分布列,利用計(jì)算器可算得EX1=1200×0.4+1400×0.3+1600×0.2+1800×0.1=1400,DX1=(1200-1400)2×0.4+(1400-1400)2×0.3+(1600-1400)2×0.2+(1800-1400)2×0.1=40000;EX2=1000×0.4+1400×0.3+1800×0.2+2200×0.1=1400,DX2=(1000-1400)2×0.4+(1400-1400)×0.3+(1800-1400)2×0.
6、2+(2200-1400)2×0.l=.因?yàn)镋X1=EX2,DX17、名射手所得的平均環(huán)數(shù)很接近,均在9環(huán)左右,但甲所得環(huán)數(shù)較集中,以9環(huán)居多,而乙得環(huán)數(shù)較分散,得8、10環(huán)地次數(shù)多些.例6.A、B兩臺(tái)機(jī)床同時(shí)加工零件,每生產(chǎn)一批數(shù)量較大的產(chǎn)品時(shí),出次品的概率如下表所示:A機(jī)床B機(jī)床次品數(shù)ξ10123次品數(shù)ξ10123概率P0.70.20.060.04概率P0.80.060.040.10問(wèn)哪一臺(tái)機(jī)床加工質(zhì)量較好?解:Eξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,Eξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.它們的期望相同,再比較它們的方差Dξ1=(0-0.4