資源描述:
《高考數(shù)學(xué)復(fù)習(xí)點撥 用二分法求方程的近似解例析.doc》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、用二分法求方程的近似解例析二分法的解題原理是利用前面的中間值定理,是一種求方程根近似值的具體方法.下面舉例說明二分法的解題思路.例1證明方程x-3x+1=0在區(qū)間(1,2)內(nèi)必有一根,并求出這個根的近似值(精確到0.01).解:令=x-3x+1,則在區(qū)間[1,2]上的圖象是一條連續(xù)不斷的曲線.∵=1-3+1=-1<0,=8-6+1=3>0,∴·<0,∴函數(shù)在區(qū)間(1,2)內(nèi)必有一零點,∴方程x-3x+1=0在區(qū)間(1,2)內(nèi)必有一根x.取區(qū)間(1,2)的中點x=1.5,用計算器算得=-0.125.因為·<0,所以x(1.5,2).再取(
2、1.5,2)的中點x=1.75,用計算器算得=1.109375.因為·<0,所以x(1.5,1.75).又取(1.5,1.75)的中點x=1.625,用計算器算得=0.416015625.因為·<0,所以x(1.5,1.625).取(1.5,1.625)的中點x=1.5625,用計算器算得=0.127197265625.因為·<0,所以x(1.5,1.5625).取(1.5,1.5625)的中點x=1.53125時,用計算器算得=-0.003387451171875.因為·<0,所x(1.53125,1.5625).l取(1.53125
3、,1.5625)的中點x=1.546875時,用計算器算得=0.060771942138671875.因為·<0,所x(1.53125,1.546875).同理,可算得·<0,x(1.53125,1.5390625);·<0,x(1.53125,1.53515625);又當(dāng)取(1.53125,1.53515625)的中點x=1.533203125時,·<0,即x(1.53125,1.533203125).由于
4、1.53125-1.533203125
5、=0.001953125<0.01,此時區(qū)間(1.53125,1.533203125)的
6、兩個端點精確到0.01的近似值都是1.53,所以原方程精確到0.01的近似解為1.53.說明一:雖然
7、1.53125-1.5390625
8、=0.0078125<0.01,但是,在區(qū)間(1.53125,1.5390625)的兩個端點精確到0.01的近似值是兩個,即1.53和1.54,與一個近似根不符.因此,類似于此種情況要一邊分析探索,一邊求解討論,直到求出符合題意的唯一解為止.說明二:為能夠?qū)⒘泓c所在的范圍盡量縮小,在一定的精度下,還可以采用逐步分割含根區(qū)間使成許多小區(qū)間,并以次確定的分點處的符號,即可以任意地縮小含根區(qū)間而實現(xiàn)根的近似
9、計算.還以此例說明如下:將[1,2]分成10等份,各分點為1.1;1.2;1.3;…;1.9,并逐個計算:=-0.969;=-0.872;=-0.703,=-0.456;=-0.125;=0.296.由·<0,可知方程的根位于(1.5,1.6)內(nèi).再將[1.5,1.6]分成10等份,求出:=-0.87049;=-0.048192;=-0.008423;l=0.52264.由于·<0,所以方程的根位于(1.53,1.54)內(nèi),取x=1.53,其精確度已達(dá)0.01.顯然,此種分割法與二分法其解題原理完全相同,只不過劃分區(qū)間有所差異.例2借助
10、計算器求方程0.8-1=lnx的近似解(精確到0.01).xyO1y=0.8-1y=lnx解:令y=0.8-1,y=lnx,畫出兩個函數(shù)的圖象,從圖象中可以找到,方程0.8-1=lnx在區(qū)間(0,1)內(nèi)必有一根x.設(shè)=0.8-1-lnx,由于沒有意義,且=0.5876>0,=-0.2<0,∴·<0,∴方程0.8-1=lnx在區(qū)間(0.5,1)內(nèi)必有一根x.取區(qū)間(0.5,1)的中點x=0.75,用計算器算得=0.1336>0,因為·<0,所以x(0.75,1).再取(0.75,1)的中點x=0.875,用計算器算得=-0.0438<0,
11、因為·<0,所以x(0.75,0.875).又取(0.75,0.875)的中點x=0.8125,用計算器算得=0.0418>0,因為·<0,所以x(0.8125,0.875).取(0.8125,0.875)的中點x=0.84375,用計算器算得=-0.0017<0,因為·<0,所以x(0.8125,0.84375).l取(0.8125,0.84375)的中點x=0.828125時,用計算器算得=0.0199>0,因為·<0,所以x(0.828125,0.84375).取(0.828125,0.84375)的中點x=0.8359375時,
12、用計算器算得=0.009>0,因為·<0,所x(0.8359375,0.84375).由于
13、0.84375-0.8359375
14、=0.0078125<0.01,此時區(qū)間(0.8359375,0.84375)