解析匯報(bào)幾何中地定點(diǎn)和定值問題.doc

解析匯報(bào)幾何中地定點(diǎn)和定值問題.doc

ID:56933137

大?。?.43 MB

頁數(shù):25頁

時(shí)間:2020-07-26

解析匯報(bào)幾何中地定點(diǎn)和定值問題.doc_第1頁
解析匯報(bào)幾何中地定點(diǎn)和定值問題.doc_第2頁
解析匯報(bào)幾何中地定點(diǎn)和定值問題.doc_第3頁
解析匯報(bào)幾何中地定點(diǎn)和定值問題.doc_第4頁
解析匯報(bào)幾何中地定點(diǎn)和定值問題.doc_第5頁
資源描述:

《解析匯報(bào)幾何中地定點(diǎn)和定值問題.doc》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。

1、解析幾何中的定點(diǎn)定值問題考綱解讀:定點(diǎn)定值問題是解析幾何解答題的考查重點(diǎn)。此類問題定中有動(dòng),動(dòng)中有定,并且常與軌跡問題,曲線系問題等相結(jié)合,深入考查直線的圓,圓錐曲線,直線和圓錐曲線位置關(guān)系等相關(guān)知識(shí)??疾閿?shù)形結(jié)合,分類討論,化歸與轉(zhuǎn)化,函數(shù)和方程等數(shù)學(xué)思想方法。一、定點(diǎn)問題解題的關(guān)健在于尋找題中用來聯(lián)系已知量,未知量的垂直關(guān)系、中點(diǎn)關(guān)系、方程、不等式,然后將已知量,未知量代入上述關(guān)系,通過整理,變形轉(zhuǎn)化為過定點(diǎn)的直線系、曲線系來解決。AByOx例1、已知A、B是拋物線y2=2px(p>0)上異于原點(diǎn)O的兩個(gè)不同點(diǎn),直線OA和OB的傾斜角分別為α和β

2、,當(dāng)α、β變化且α+β=時(shí),證明直線AB恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo)。例2.已知橢圓:的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.⑴求橢圓C的方程;⑵設(shè),、是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),求直線的斜率的取值圍;⑶在⑵的條件下,證明直線與軸相交于定點(diǎn).【針對(duì)性練習(xí)1】在直角坐標(biāo)系中,點(diǎn)到點(diǎn),的距離之和是,點(diǎn)的軌跡是與軸的負(fù)半軸交于點(diǎn),不過點(diǎn)的直線與軌跡交于不同的兩點(diǎn)和.⑴求軌跡的方程;⑵當(dāng)時(shí),求與的關(guān)系,并證明直線過定點(diǎn).【針對(duì)性練習(xí)2】在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過

3、點(diǎn)T()的直線TA、TB與橢圓分別交于點(diǎn)M、,其中m>0,。(1)設(shè)動(dòng)點(diǎn)P滿足,求點(diǎn)P的軌跡;(2)設(shè),求點(diǎn)T的坐標(biāo);(3)設(shè),求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān))?!踞槍?duì)性練習(xí)3】已知橢圓C中心在原點(diǎn),焦點(diǎn)在軸上,焦距為,短軸長為.(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;(Ⅱ)若直線:與橢圓交于不同的兩點(diǎn)(不是橢圓的左、右頂點(diǎn)),且以為直徑的圓經(jīng)過橢圓的右頂點(diǎn).求證:直線過定點(diǎn),并求出定點(diǎn)的坐標(biāo).例3、已知橢圓的焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率,過橢圓的右焦點(diǎn)作與坐標(biāo)軸不垂直的直線,交橢圓于、兩點(diǎn)。(I)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)

4、點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),且,求的取值圍;(Ⅲ)設(shè)點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),在軸上是否存在一個(gè)定點(diǎn),使得、、三點(diǎn)共線?若存在,求出定點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由。一、定值問題在解析幾何中,有些幾何量與參數(shù)無關(guān),這就構(gòu)成了定值問題,解決這類問題時(shí),要善于運(yùn)用辯證的觀點(diǎn)去思考分析,在動(dòng)點(diǎn)的“變”中尋求定值的“不變”性,一種思路是進(jìn)行一般計(jì)算推理求出其結(jié)果,選定一個(gè)適合該題設(shè)的參變量,用題中已知量和參變量表示題中所涉及的定義,方程,幾何性質(zhì),再用韋達(dá)定理,點(diǎn)差法等導(dǎo)出所求定值關(guān)系所需要的表達(dá)式,并將其代入定值關(guān)系式,化簡整理求出結(jié)果,;另一種思路是通過考查極端位

5、置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊圖形等)先確定出定值,揭開神秘的面紗,這樣可將盲目的探索問題轉(zhuǎn)化為有方向有目標(biāo)的一般性證明題,從而找到解決問題的突破口,將該問題涉及的幾何形式轉(zhuǎn)化為代數(shù)形式或三角形式,證明該式是恒定的。同時(shí)有許多定值問題,通過特殊探索法不但能夠確定出定值,還可以為我們提供解題的線索。如果試題是客觀題形式出現(xiàn),特珠化方法往往比較奏效。例4、已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為1且過橢圓右焦點(diǎn)的直線交橢圓于A、B兩點(diǎn),共線。(1)求橢圓的離心率;(2)設(shè)M為橢圓上任意一點(diǎn),且,證明為定值。例5、已

6、知,橢圓C過點(diǎn)A,兩個(gè)焦點(diǎn)為(-1,0),(1,0)。(1)求橢圓C的方程;(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。將第二問的結(jié)論進(jìn)行如下推廣:結(jié)論1.過橢圓上任一點(diǎn)任意作兩條斜率互為相反數(shù)的直線交橢圓于E、F兩點(diǎn),則直線EF的斜率為定值(常數(shù))。結(jié)論2.過雙曲線上任一點(diǎn)任意作兩條斜率互為相反數(shù)的直線交橢圓于E、F兩點(diǎn),則直線EF的斜率為定值(常數(shù))。結(jié)論3.過拋物線上任一點(diǎn)任意作兩條斜率互為相反數(shù)的直線交橢圓于E、F兩點(diǎn),則直線EF的斜率為定值(常數(shù))。例6、已知橢圓的中

7、心在原點(diǎn),焦點(diǎn)在軸的非負(fù)半軸上,點(diǎn)到短軸端點(diǎn)的距離是4,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值是6.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和離心率;(Ⅱ)若為焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),動(dòng)點(diǎn)滿足,問是否存在一個(gè)定點(diǎn),使到點(diǎn)的距離為定值?若存在,求出點(diǎn)的坐標(biāo)及此定值;若不存在,請(qǐng)說明理由.例7、已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,P(2,0)為定點(diǎn).(Ⅰ)若點(diǎn)P為拋物線的焦點(diǎn),求拋物線C的方程;(Ⅱ)若動(dòng)圓M過點(diǎn)P,且圓心M在拋物線C上運(yùn)動(dòng),點(diǎn)A、B是圓M與軸的兩交點(diǎn),試推斷是否存在一條拋物線C,使

8、AB

9、為定值?若存在,求這個(gè)定值;若不存在,說明理由.例8、已知橢圓的中心在

10、原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的距離的最小值為,離心率為﹒(Ⅰ)求橢圓的方程;(Ⅱ)過點(diǎn)作直線交于、兩點(diǎn)

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。