資源描述:
《圖像特征提取方法》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、圖像特征提取方法摘要?特征提取是計(jì)算機(jī)視覺和圖像處理中的一個(gè)概念。它指的是使用計(jì)算機(jī)提取圖像信息,決定每個(gè)圖像的點(diǎn)是否屬于一個(gè)圖像特征。特征提取的結(jié)果是把圖像上的點(diǎn)分為不同的子集,這些子集往往屬于孤立的點(diǎn)、連續(xù)的曲線或者連續(xù)的區(qū)域。至今為止特征沒有萬能和精確的圖像特征定義。特征的精確定義往往由問題或者應(yīng)用類型決定。特征是一個(gè)數(shù)字圖像中“有趣”的部分,它是許多計(jì)算機(jī)圖像分析算法的起點(diǎn)。因此一個(gè)算法是否成功往往由它使用和定義的特征決定。因此特征提取最重要的一個(gè)特性是“可重復(fù)性”:同一場(chǎng)景的不同圖像所提取的特征應(yīng)該是相同的。???????特征提取是圖象處
2、理中的一個(gè)初級(jí)運(yùn)算,也就是說它是對(duì)一個(gè)圖像進(jìn)行的第一個(gè)運(yùn)算處理。它檢查每個(gè)像素來確定該像素是否代表一個(gè)特征。假如它是一個(gè)更大的算法的一部分,那么這個(gè)算法一般只檢查圖像的特征區(qū)域。作為特征提取的一個(gè)前提運(yùn)算,輸入圖像一般通過高斯模糊核在尺度空間中被平滑。此后通過局部導(dǎo)數(shù)運(yùn)算來計(jì)算圖像的一個(gè)或多個(gè)特征。常用的圖像特征有顏色特征、紋理特征、形狀特征、空間關(guān)系特征。當(dāng)光差圖像時(shí),常??吹降氖沁B續(xù)的紋理與灰度級(jí)相似的區(qū)域,他們相結(jié)合形成物體。但如果物體的尺寸很小或者對(duì)比度不高,通常要采用較高的分辨率觀察:如果物體的尺寸很大或?qū)Ρ榷群軓?qiáng),只需要降低分辨率。如果
3、物體尺寸有大有小,或?qū)Ρ扔袕?qiáng)有弱的情況下同事存在,這時(shí)提取圖像的特征對(duì)進(jìn)行圖像研究有優(yōu)勢(shì)。常用的特征提取方法有:Fourier變換法、窗口Fourier變換(Gabor)、小波變換法、最小二乘法、邊界方向直方圖法、基于Tamura紋理特征的紋理特征提取等。設(shè)計(jì)內(nèi)容課程設(shè)計(jì)的內(nèi)容與要求(包括原始數(shù)據(jù)、技術(shù)參數(shù)、條件、設(shè)計(jì)要求等):一、課程設(shè)計(jì)的內(nèi)容本設(shè)計(jì)采用邊界方向直方圖法、基于PCA的圖像數(shù)據(jù)特征提取、基于Tamura紋理特征的紋理特征提取、顏色直方圖提取顏色特征等等四種方法設(shè)計(jì)。(1)邊界方向直方圖法由于單一特征不足以準(zhǔn)確地描述圖像特征,提出了一
4、種結(jié)合顏色特征和邊界方向特征的圖像檢索方法.針對(duì)傳統(tǒng)顏色直方圖中圖像對(duì)所有像素具有相同重要性的問題進(jìn)行了改進(jìn),提出了像素加權(quán)的改進(jìn)顏色直方圖方法;然后采用非分割圖像的邊界方向直方圖方法提取圖像的形狀特征,該方法相對(duì)分割方法具有簡(jiǎn)單、有效等特點(diǎn),并對(duì)圖像的縮放、旋轉(zhuǎn)以及視角具有不變性.為進(jìn)一步提高圖像檢索的質(zhì)量引入相關(guān)反饋機(jī)制,動(dòng)態(tài)調(diào)整兩幅圖像相似度中顏色特征和方向特征的權(quán)值系數(shù),并給出了相應(yīng)的權(quán)值調(diào)整算法.實(shí)驗(yàn)結(jié)果表明,上述方法明顯地優(yōu)于其它方法.小波理論和幾個(gè)其他課題相關(guān)。所有小波變換可以視為時(shí)域頻域的形式,所以和調(diào)和分析相關(guān)。所有實(shí)際有用的離散
5、小波變換使用包含有限脈沖響應(yīng)濾波器的濾波器段(filterbank)。構(gòu)成CWT的小波受海森堡的測(cè)不準(zhǔn)原理制約,或者說,離散小波基可以在測(cè)不準(zhǔn)原理的其他形式的上下文中考慮。通過邊緣檢測(cè),把圖像分為邊緣區(qū)域和非邊緣區(qū)域,然后在邊緣區(qū)域內(nèi)進(jìn)行邊緣定位.根據(jù)局部區(qū)域內(nèi)邊緣的直線特性,求得小鄰域內(nèi)直線段的高精度位置;再根據(jù)邊緣區(qū)域內(nèi)邊緣的全局直線特性,用線段的中點(diǎn)來擬合整個(gè)直線邊緣,得到亞像素精度的圖像邊緣.在擬合的過程中,根據(jù)直線段轉(zhuǎn)角的變化剔除了噪聲點(diǎn),提高了定位精度.并且,根據(jù)角度和距離區(qū)分出不同直線和它們的交點(diǎn),給出了圖像精確的矢量化結(jié)果圖像的邊界
6、是指其周圍像素灰度有階躍變化或屋頂變化的那些像素的集合,邊界廣泛的存在于物體和背景之間、物體和物體之間,它是圖像分割所依賴的重要特征.邊界方向直方圖具有尺度不變性,能夠比較好的描述圖像的大體形狀.邊界直方圖一般是通過邊界算子提取邊界,得到邊界信息后,需要表征這些圖像的邊界,對(duì)于每一個(gè)邊界點(diǎn),根據(jù)圖像中該點(diǎn)的梯度方向計(jì)算出該邊界點(diǎn)處法向量的方向角,將空間量化為M級(jí),計(jì)算每個(gè)邊界點(diǎn)處法向量的方向角落在M級(jí)中的頻率,這樣便得到了邊界方向直方圖.圖像中像素的梯度向量可以表示為[(,),),(,),)],其中Gx(,),),G(,),)可以用下面的Sobel
7、算子[8]:(,Y)=,(一1,Y+1)+2×,(,Y+1)+,(+1,Y+1)一,(一1,Y一1)一2×,(,Y一1)一,(+1,Y一1)(,Y)=,(+1,Y一1)+2×,(+1,Y)+,(+1,Y+1)一,(一1,Y一1)一2×,(一1,Y)一,(一1,Y+1)(4)I(x,y)表示在圖像的(x,y)點(diǎn)像素的亮度。為了減少由于數(shù)字化過程中產(chǎn)生的噪聲的影響,邊界方向直方圖是基于局部像素梯度向量的平均值.因?yàn)橄喾捶较虻奶荻瓤赡軙?huì)相互抵消,所以并不能直接對(duì)局部鄰居像素點(diǎn)的梯度向量平均.解決這個(gè)問題的一個(gè)方法就是在計(jì)算平均值前,先對(duì)用復(fù)數(shù)表示的向量進(jìn)
8、行平方運(yùn)算,等價(jià)于把梯度向量的角度增加一倍.角度增加一倍的相反方向的兩個(gè)梯度向量分別指向它們的對(duì)立梯度向量,從而互相得到增