資源描述:
《最新fundamentals of acoustics(6) 聲學基礎(英文版教學課件課件ppt.ppt》由會員上傳分享,免費在線閱讀,更多相關內容在教育資源-天天文庫。
1、FUNDAMENTALSOFACOUSTICS(6)聲學基礎(英文版教學課件)VibrationsofextendedsystemsInthepreviouschapteritwasassumedthatthemassmovesasarigidbodysothatitcouldbeconsideredconcentratedatasinglepoint.However,mostvibratingbodiesarenotsosimple.Aloudspeakerhasitsmassdistributedoveritssurfac
2、esothattheconedoesmoveasaunit.Apianosting.Aflexiblestringundertensionprovidestheeasiestexampleforvisualizinghowwavesworkanddevelopingphysicalconceptsandtechniquesfortheirstudy.Thevibratingstringisinterestingbothforitsownsake(asasourceofsoundonaguitarorviolin)andasam
3、odelforthemotionofothersystems.Westudyfreemotionofastring.Theproceduresweusewillapplyinourlaterstudyofotherkindsofwaves.Itisobservedthatthespeedofpropagationofallsmalldisplacementsisindependentoftheshapeandamplitudeoftheinitialdisplacementanddependsonlyonthemassperu
4、nitlengthofthestringanditstensionExperimentandtheoryshowthatthisseedisgivenbyWherecisinm/s,TisthetensioninNandplisthemassperunitlengthofthestringinkg/m.TheequationofmotionAssumeastringofuniformlineardensityplandnegligiblestiffness,stretchedtoatensionTgreatenoughthat
5、theeffectsofgravitycanbeneglected.Alsoassumethattherearenodissipativeforces(suchasthoseassociatedwithfrictionorwiththeradiationofacousticenergy)Fig.Aisolatesaninfinitesimalelementofthestringwithequilibriumpositionxandequilibriumlengthdx.Whenthestringisatrest,thetens
6、ionsatxandatx+dxarepreciselyequalinmagnitudeandoppositeindirection,makingzerototalforce.Fig.AIf(thetransversedisplacementofthiselementfromitsequilibriumposition)issmall,thetensionTremainsconstantalongthestringandthedifferencebetweentheComponentofthetensionatthetwoen
7、dsoftheelementisIfissmall,WegetApplyingtheTaylor’sseriesexpansionSincethemassoftheelementispldxanditsaccelerationinthedirectionisNewton’slawgivesThenyieldstheequationofmotionwheretheconstantc2isdefinedbyGENERALSOLUTIONOFTHEEQUATIONGOFMOTIONEquation(2-1)isasecond-ord
8、er,partialdifferentialequation.Itscompletesolutioncontainstwoarbitraryfunctions.Themostgeneralsolutionisarecompletelyarbitraryfunctionsofa