資源描述:
《排列、組合、概率與統(tǒng)計(jì)基礎(chǔ)知識(shí)與典型例題》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫。
1、數(shù)學(xué)基礎(chǔ)知識(shí)與典型例題(第十章排列、組合、概率與統(tǒng)計(jì))排列與組合1.分類計(jì)數(shù)原理:完成一件事,有n類辦法,在第1類辦法中有種不同的方法,在第2類辦法中有種不同的方法,……,在第n類辦法中有種不同的方法,那么完成這件事共有N=n1+n2+n3+…+nM種不同的方法.2.分步計(jì)數(shù)原理:完成一件事,需要分成n個(gè)步驟,做第一步有種不同的方法,做第二步有種不同的方法,……,做第n步有種不同的方法,那么完成這件事共有N=n1·n2·n3·…nM種不同的方法.注:分類計(jì)數(shù)原理和分步計(jì)數(shù)原理是排列組合的基礎(chǔ)和核心,既可用來推導(dǎo)排列數(shù)、組合數(shù)公式,也可用來直接解題。它們的共同點(diǎn)都是把一個(gè)事件分
2、成若干個(gè)分事件來進(jìn)行計(jì)算。只不過利用分類計(jì)算原理時(shí),每一種方法都獨(dú)立完成事件;如需連續(xù)若干步才能完成的則是分步。利用分類計(jì)數(shù)原理,重在分“類”,類與類之間具有獨(dú)立性和并列性;利用分步計(jì)數(shù)原理,重在分步;步與步之間具有相依性和連續(xù)性.比較復(fù)雜的問題,常先分類再分步。3.⑴排列的定義:從n個(gè)不同的元素中任取m(m≤n)個(gè)元素,按照一定順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.⑵排列數(shù)的定義:從n個(gè)不同元素中取出m(m≤n)個(gè)元素排成一列,稱為從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列數(shù),用符號(hào)表示.其中n,m∈,并且m≤n.⑶排
3、列數(shù)公式:當(dāng)m=n時(shí),排列稱為全排列,排列數(shù)為=記為n!,且規(guī)定O!=1.注:;4.⑴組合的定義:從n個(gè)不同的元素中任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.⑵組合數(shù)的定義:從n個(gè)不同的元素中取出m(m≤n)個(gè)元素的所有組合數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù).用符號(hào)表示.⑶組合數(shù)公式:.規(guī)定,其中m,n∈N+,m≤n.注:排列是“排成一排”,組合是“并成一組”,前者有序而后者無序.排列與組合⑷組合數(shù)的兩個(gè)性質(zhì):①從n個(gè)不同元素中取出m個(gè)元素后就剩下n-m個(gè)元素,因此從n個(gè)不同元素中取出n-m個(gè)元素的方法是一一對(duì)應(yīng)的,因此是一樣多的.
4、②根據(jù)組合定義與加法原理得;在確定n+1個(gè)不同元素中取m個(gè)元素方法時(shí),對(duì)于某一元素,只存在取與不取兩種可能,如果取這一元素,則需從剩下的n個(gè)元素中再取m-1個(gè)元素,所以有C,如果不取這一元素,則需從剩余n個(gè)元素中取出m個(gè)元素,所以共有C種,依分類原理有.5.解排列、組合題的基本策略與方法(Ⅰ)排列、組合問題幾大解題方法:①直接法;②排除法;③捆綁法:在特定要求的條件下,將幾個(gè)相關(guān)元素當(dāng)作一個(gè)元素來考慮,待整體排好之后再考慮它們“局部”的排列.它主要用于解決“元素相鄰問題”;④插空法:先把一般元素排列好,然后把待定元素插排在它們之間或兩端的空檔中,此法主要解決“元素不相鄰問題”
5、.⑤占位法:從元素的特殊性上講,對(duì)問題中的特殊元素應(yīng)優(yōu)先排列,然后再排其他一般元素;從位置的特殊性上講,對(duì)問題中的特殊位置應(yīng)優(yōu)先考慮,然后再排其他剩余位置.即采用“先特殊后一般”的解題原則.⑥調(diào)序法:當(dāng)某些元素次序一定時(shí),可用此法.解題方法是:先將n個(gè)元素進(jìn)行全排列有種,個(gè)元素的全排列有種,由于要求m個(gè)元素次序一定,因此只能取其中的某一種排法,可以利用除法起到去調(diào)序的作用,即若n個(gè)元素排成一列,其中m個(gè)元素次序一定,共有種排列方法.(Ⅱ)排列組合常見解題策略:①特殊元素優(yōu)先安排策略;②合理分類與準(zhǔn)確分步策略;③排列、組合混合問題先選后排的策略(處理排列組合綜合性問題一般是先選
6、元素,后排列);④正難則反,等價(jià)轉(zhuǎn)化策略;⑤相鄰問題插空處理策略;⑥不相鄰問題插空處理策略;⑦定序問題除法處理策略;⑧分排問題直排處理的策略;⑨“小集團(tuán)”排列問題中先整體后局部的策略;⑩構(gòu)造模型的策略.6.二項(xiàng)式定理:⑴對(duì)于,,這個(gè)公式所表示的定理叫做二項(xiàng)式定理,右邊的多項(xiàng)式叫做的展開式.注:展開式具有以下特點(diǎn):項(xiàng)數(shù):共有項(xiàng);系數(shù):依次為組合數(shù)且每一項(xiàng)的次數(shù)是一樣的,即為n次,展開式依a的降冪排列,b的升冪排列展開.⑵二項(xiàng)展開式的通項(xiàng):的展開式第r+1為.⑶二項(xiàng)式系數(shù)的性質(zhì).①二項(xiàng)展開式中的叫做二項(xiàng)式系數(shù)第13頁第14頁②在二項(xiàng)展開式中與首未兩項(xiàng)“等距離”的兩項(xiàng)的二項(xiàng)式系數(shù)相
7、等;即排列與組合③二項(xiàng)展開式的中間項(xiàng)二項(xiàng)式系數(shù)最大且當(dāng)時(shí),二項(xiàng)系數(shù)是逐漸增大,當(dāng)時(shí),二項(xiàng)式系數(shù)是逐漸減小的.(Ⅰ)當(dāng)n是偶數(shù)時(shí),中間項(xiàng)是第項(xiàng),它的二項(xiàng)式系數(shù)最大;(Ⅱ)當(dāng)n是奇數(shù)時(shí),中間項(xiàng)為兩項(xiàng),即第項(xiàng)和第項(xiàng),它們的二項(xiàng)式系數(shù)最大.④系數(shù)和:所有二項(xiàng)式系數(shù)的和:;奇數(shù)項(xiàng)二項(xiàng)式系數(shù)的和=偶數(shù)項(xiàng)而是系數(shù)的和:.⑤⑷如何來求展開式中含的系數(shù)呢?其中且把視為二項(xiàng)式,先找出含有的項(xiàng),另一方面在中含有的項(xiàng)為,故在中含的項(xiàng)為.其系數(shù)為.⑸二項(xiàng)式定理的應(yīng)用:解決有關(guān)近似計(jì)算、整除問題,運(yùn)用二項(xiàng)展開式定理并且結(jié)合放縮法證