Automatic Classification of Power Quality

ID:40707765

大小:1.56 MB

頁數(shù):10頁

時間:2019-08-06

Automatic Classification of Power Quality_第1頁
Automatic Classification of Power Quality_第2頁
Automatic Classification of Power Quality_第3頁
Automatic Classification of Power Quality_第4頁
Automatic Classification of Power Quality_第5頁
資源描述:

《Automatic Classification of Power Quality》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在學術論文-天天文庫

1、IEEETRANSACTIONSONINDUSTRIALELECTRONICS,VOL.61,NO.1,JANUARY2014521AutomaticClassi?cationofPowerQualityEventsUsingBalancedNeuralTreeB.Biswal,Member,IEEE,M.Biswal,Member,IEEE,S.Mishra,SeniorMember,IEEE,andR.JalajaAbstractThispaperproposesanempirical-modedecomposi-time.TheFouriertransf

2、ormgivesinformationregardingthetion(EMD)andHilberttransform(HT)-basedmethodforthefrequencycomponentspresentbutdoesnotcontaininformationclassi?cationofpowerquality(PQ)events.Nonstationarypoweronwhentheyexistandforhowlong.AlthoughtheFouriersignaldisturbancewaveformsareconsideredasthes

3、uperimposi-transformisoneofthefasttechniques,itsef?ciencyislimitedtionofvariousundulatingmodes,andEMDisusedtoseparateouttheseintrinsicmodesknownasintrinsicmodefunctions(IMFs).tostationarysignalsonly.MostPQeventsarenonstationaryandTheHTisappliedonalltheIMFstoextractinstantaneousam-he

4、ncerequiretechniquethatwouldnotonlyprovidefrequencyplitudeandfrequencycomponents.Thistimefrequencyanalysisinformationbutalsocapturethetimingofoccurrenceoftheresultsintheclearvisualdetection,localization,andclassi?cationdisturbance.Theshort-timeFouriertransformgivesagoodofthedifferen

5、tpowersignaldisturbances.Therequiredfeaturecharacterizationofthesignal.Itprovidesfrequencyaswellasvectorsareextractedfromthetimefrequencydistributiontoperformtheclassi?cation.Abalancedneuraltreeisconstructedtotimeinformation.Thenonstationarynatureofthesignaliswellclassifythepowersig

6、nalpatterns.Finally,theproposedmethodisde?ned.However,duetotheconstantwindowlength,somecomparedwithanS-transform-basedclassi?ertoshowtheef?cacycharacteristicsofthesignalarenotdetectedwell.ThetimeoftheproposedtechniqueinclassifyingthePQdisturbances.andfrequencyresolutionislimitedbyth

7、eHeisenberg–GaborIndexTermsBalancedneuraltree(NT)(BNT),empirical-inequality.Differenttypesofdisturbanceswouldrequirewin-modedecomposition(EMD),Hilberttransform(HT),dowsofdifferentlengths.Choosingthebestwindowlengthinstantaneousfrequency(IF),intrinsicmodefunction(IMF),couldbeaproblem

8、.Thewavelettransfor

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。
关闭