資源描述:
《組合課件(組合).ppt》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、1.2.2組合問題一:從甲、乙、丙3名同學(xué)中選出2名去參加某天的一項活動,其中1名同學(xué)參加上午的活動,1名同學(xué)參加下午的活動,有多少種不同的選法?問題二:從甲、乙、丙3名同學(xué)中選出2名去參加某天一項活動,有多少種不同的選法?甲、乙;甲、丙;乙、丙3情境創(chuàng)設(shè)從已知的3個不同元素中每次取出2個元素,并成一組問題2從已知的3個不同元素中每次取出2個元素,按照一定的順序排成一列.問題1排列組合有順序無順序一般地,從n個不同元素中取出m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合.排列與組合的概念有什么共同點與不同點?概念講解組合
2、定義:組合定義:一般地,從n個不同元素中取出m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合.排列定義:一般地,從n個不同元素中取出m(m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.共同點:都要“從n個不同元素中任取m個元素”不同點:排列與元素的順序有關(guān),而組合則與元素的順序無關(guān).概念講解思考一:ab與ba是相同的排列還是相同的組合?為什么?思考二:兩個相同的排列有什么特點?兩個相同的組合呢?1)元素相同;2)元素排列順序相同.元素相同概念理解構(gòu)造排列分成兩步完成,先取后排;而構(gòu)造組合
3、就是其中一個步驟.思考三:組合與排列有聯(lián)系嗎?判斷下列問題是組合問題還是排列問題?(1)設(shè)集合A={a,b,c,d,e},則集合A的含有3個元素的子集有多少個?(2)某鐵路線上有5個車站,則這條鐵路線上共需準(zhǔn)備多少種車票?組合問題排列問題(3)10名同學(xué)分成人數(shù)相同的數(shù)學(xué)和英語兩個學(xué)習(xí)小組,共有多少種分法?組合問題(4)10人聚會,見面后每兩人之間要握手相互問候,共需握手多少次?組合問題(5)從4個風(fēng)景點中選出2個游覽,有多少種不同的方法?組合問題(6)從4個風(fēng)景點中選出2個,并確定這2個風(fēng)景點的游覽順序,有多少種不同的方法?排列問題組合是
4、選擇的結(jié)果,排列是選擇后再排序的結(jié)果.1.從a,b,c三個不同的元素中取出兩個元素的所有組合分別是:ab,ac,bc2.已知4個元素a,b,c,d,寫出每次取出兩個元素的所有組合.abcdbcdcdab,ac,ad,bc,bd,cd(3個)(6個)概念理解從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用符號表示.如:從a,b,c三個不同的元素中取出兩個元素的所有組合個數(shù)是:如:已知4個元素a、b、c、d,寫出每次取出兩個元素的所有組合個數(shù)是:概念講解組合數(shù):注意:是一個數(shù),應(yīng)該把它與“組合”區(qū)
5、別開來.1.寫出從a,b,c,d四個元素中任取三個元素的所有組合。abc,abd,acd,bcd.bcddcbacd練一練組合排列abcabdacdbcdabcbaccabacbbcacbaabdbaddabadbbdadbaacdcaddacadccdadcabcdcbddbcbdccdbdcb不寫出所有組合,怎樣才能知道組合的種數(shù)?你發(fā)現(xiàn)了什么?如何計算:組合數(shù)公式排列與組合是有區(qū)別的,但它們又有聯(lián)系.根據(jù)分步計數(shù)原理,得到:因此:一般地,求從個不同元素中取出個元素的排列數(shù),可以分為以下2步:第1步,先求出從這個不同元素中取出個元素的組合數(shù)
6、.第2步,求每一個組合中個元素的全排列數(shù).這里,且,這個公式叫做組合數(shù)公式.概念講解組合數(shù)公式:從n個不同元中取出m個元素的排列數(shù)概念講解例1計算:⑴⑵例2.甲、乙、丙、丁4支足球隊舉行單循環(huán)賽,(1)列出所有各場比賽的雙方;(2)列出所有冠亞軍的可能情況.(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁乙甲、丙甲、丁甲、丙乙、丁乙、丁丙(1)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁解:例題分析解:(1)35(2)120例3例4:一位教練的足球隊共有17名初級學(xué)員,他們中以前沒有一人參加過比賽。按照足球比賽規(guī)則,比賽時一個足球隊的上場隊員是11人。問:(1)
7、這位教練從這17名學(xué)員中可以形成多少種學(xué)員上場方案?(2)如果在選出11名上場隊員時,還要確定其中的守門員,那么教練員有多少種方式做這件事情?解:(1)由于上場學(xué)員沒有角色差異,所以可以形成的學(xué)員上場方案種數(shù)為(2)教練員可以分兩步完成這件事情:第1步,從17名學(xué)員中選出11人組成上場小組,共有種選法;第2步,從選出的11人中選出1名守門員,共有種選法。所以教練員做這件事情的方式種數(shù)為例5:在100件產(chǎn)品中有98件合格品,2件次品。產(chǎn)品檢驗時,從100件產(chǎn)品中任意抽出3件。(1)一共有多少種不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有
8、多少種?(3)抽出的3件中至少有1件是次品的抽法有多少種?說明:“至少”“至多”的問題,通常用分類法或間接法求解。解:(1)所求的不同抽法的種數(shù),就是