資源描述:
《mdsp for doctoral students 2000》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。
1、ModernSignalProcessingforDoctoralStudents☆與傳統(tǒng)統(tǒng)計(jì)信號(hào)處理的三個(gè)基本假設(shè):線性、高斯性和平穩(wěn)性不同,現(xiàn)代信號(hào)處理處理的對(duì)象是非線性、非高斯和非平穩(wěn)的信號(hào)?,F(xiàn)代信號(hào)處理已成為現(xiàn)代通信與信息系統(tǒng)、電子科學(xué)技術(shù)以及自動(dòng)控制等眾多學(xué)科的重要理論基礎(chǔ)和工具。通過跟蹤本學(xué)科的最新發(fā)展趨勢(shì)與熱門研究課題,來啟發(fā)培養(yǎng)學(xué)生能具備適應(yīng)未來一些新的交叉學(xué)科發(fā)展的綜合創(chuàng)新能力。自適應(yīng)濾波器原理AdaptiveFilterTheory(Thirdedition)SimonHaykin電子工業(yè)出版社1998北京非平穩(wěn)信號(hào)分析與處理,張賢達(dá),保錚,國(guó)防工業(yè)出
2、版社1998年9月北京根據(jù)上述兩本書的內(nèi)容,每人各自準(zhǔn)備其中一部分的內(nèi)容(勿重復(fù)),作重點(diǎn)發(fā)言,課上進(jìn)行討論。AdaptiveFilterTheoryBackgroundLinearOptimumfiltering--Weinerfilters,Linearpredictions,KalmanfiltersLinearAdaptiveFiltering—LMS,LS,RLS,Square-rootadaptivefilter,Trackingoftime-varyingsystems.NonlinearAdaptiveFiltering—Blinddeconvolutio
3、n,Back-propagationlearning非平穩(wěn)信號(hào)分析與處理時(shí)頻分析,Gabor變換,小波分析Wavelets,分?jǐn)?shù)階傅氏變換FractionalFourierTransform,循環(huán)平穩(wěn)信號(hào)分析與處理,線調(diào)頻小波變換Chirplettransform,調(diào)幅-調(diào)頻信號(hào)分析處理小波-Wavelet是一小段被諧波調(diào)制的信號(hào)波,一小段被窄窗抽取的諧波,一小段具有某種包絡(luò)的諧波線調(diào)頻小波—Chirplet是一小段被窄窗抽取的線性調(diào)頻波,一小段具有某種包絡(luò)的線性調(diào)頻波――――時(shí)間、頻率、尺度、頻率傾斜、時(shí)間傾斜傅氏變換――頻率(一維線調(diào)頻小波變換)短時(shí)傅氏變換――時(shí)間、
4、頻率(二維線調(diào)頻小波變換)小波變換――時(shí)間、尺度(二維線調(diào)頻小波變換)多窗短時(shí)傅氏變換――時(shí)間、頻率、尺度(三維線調(diào)頻小波變換)非高斯線調(diào)頻小波變換-連續(xù)線調(diào)頻小波變換――時(shí)間、頻率、尺度、頻率傾斜、時(shí)間傾斜(五維線調(diào)頻小波變換)(WaveletDigestVolume8:Issue6)Followingthesine-cosinefunction,sawtoothwave,squarewave,triangularwave,trapezoidalwaveandsoonbecomeneweasily-generatedperiodicfunctionsinmodernel
5、ectronics.SimilartoFourier'sidea,anaturalquestioniswhetherasignalcanbeconsideredasasuperpositionofeasily-generatedfunctionswithdifferentfrequencies.ThereforeitisnecessarytogeneralizeFourieranalysisbasedonsine-cosinefunctionsintofrequencyanalysisbasedongeneralperiodicfunctions.Inthispaper,
6、weintroducethefrequencyseriesandfrequencytransformationbasedongeneralperiodicfunctions.Forpracticalconveniencealmostalleasily-generatedfunctionsinelectronicsareconsideredcarefullyasexamples.AsanewandpracticalgeneralizationofclassicalFourieranalysis,theseresultswillbecomeatheoreticalfounda
7、tionforthetechniqueofeasilygeneratedfunctionanalysisinsignalprocessing.Alotofquestionsinthis.........WaveletDigestMonday,March20,2000Volume9:Issue21.Preprint:FastRidgePursuitwithGaussianChirps2.Preprint:Reductionofcorrelatednoise.3.Preprint:SimpleDenoisingAlgorithmU