資源描述:
《數(shù)學(xué)建模的作用意義new》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、數(shù)學(xué)建模的背景:?人們在觀察、分析和研究一個現(xiàn)實對象時經(jīng)常使用模型,如展覽館里的飛機(jī)模型、水壩模型,實際上,照片、玩具、地圖、電路圖等都是模型,它們能概括地、集中地反映現(xiàn)實對象的某些特征,從而幫助人們迅速、有效地了解并掌握那個對象。數(shù)學(xué)模型不過是更抽象些的模型。?當(dāng)需要從定量的角度分析和研究一個實際問題時,人們就要在深入調(diào)查研究、了解對象信息、作出簡化假設(shè)、分析內(nèi)在規(guī)律等工作的基礎(chǔ)上,用數(shù)學(xué)的符號和語言,把它表述為數(shù)學(xué)式子(稱為數(shù)學(xué)模型),然后用通過計算得到的模型結(jié)果來解釋實際問題,并接受實際的檢驗。這個全過程就稱為數(shù)學(xué)建模。?近半個多世紀(jì)以來,?隨著計算機(jī)技術(shù)的迅速發(fā)展,數(shù)
2、學(xué)的應(yīng)用不僅在工程技術(shù)、自然科學(xué)等領(lǐng)域發(fā)揮著越來越重要的作用,?而且以空前的廣度和深度向經(jīng)濟(jì)、金融、生物、醫(yī)學(xué)、環(huán)境、地質(zhì)、人口、交通等新的領(lǐng)域滲透,所謂數(shù)學(xué)技術(shù)已經(jīng)成為當(dāng)代高新技術(shù)的重要組成部分。?不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實際問題,還是與其它學(xué)科相結(jié)合形成交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對象的數(shù)學(xué)模型,并計算求解。人們常常把數(shù)學(xué)建模和計算機(jī)技術(shù)在知識經(jīng)濟(jì)時代的作用比喻為如虎添翼。?數(shù)學(xué)建模日益顯示其重要作用,已成為現(xiàn)代應(yīng)用數(shù)學(xué)的一個重要領(lǐng)域。為培養(yǎng)高質(zhì)量、高層次人才,對理工、經(jīng)濟(jì)、金融、管理科學(xué)等各專業(yè)的大學(xué)生都提出“數(shù)學(xué)建模技能和素質(zhì)方面的要求”。?
3、??數(shù)學(xué)建模在現(xiàn)代社會的一些作用?(1)在一般工程技術(shù)領(lǐng)域,數(shù)學(xué)建模仍然大有用武之地。?????在以聲、光、熱、力、電這些物理學(xué)科為基礎(chǔ)的諸如機(jī)械、電機(jī)、土木、水利等工程技術(shù)領(lǐng)域中,數(shù)學(xué)建模的普遍性和重要性不言而喻,雖然這里的基本模型是已有的,但是由于新技術(shù)、新工藝的不斷涌現(xiàn),提出了許多需要用數(shù)學(xué)方法解決的新問題;高速、大型計算機(jī)的飛速發(fā)展,使得過去即便有了數(shù)學(xué)模型也無法求解的課題(如大型水壩的應(yīng)力計算,中長期天氣預(yù)報等)迎刃而解;建立在數(shù)學(xué)模型和計算機(jī)模擬基礎(chǔ)上的CAD技術(shù),以其快速、經(jīng)濟(jì)、方便等優(yōu)勢,大量地替代了傳統(tǒng)工程設(shè)計中的現(xiàn)場實驗、物理模擬等手段。?????(2)在
4、高新技術(shù)領(lǐng)域,數(shù)學(xué)建模幾乎是必不可少的工具。?????無論是發(fā)展通訊、航天、微電子、自動化等高新技術(shù)本身,還是將高新技術(shù)用于傳統(tǒng)工業(yè)去創(chuàng)造新工藝、開發(fā)新產(chǎn)品,計算機(jī)技術(shù)支持下的建模和模擬都是經(jīng)常使用的有效手段。數(shù)學(xué)建模、數(shù)值計算和計算機(jī)圖形學(xué)等相結(jié)合形成的計算機(jī)軟件,已經(jīng)被固化于產(chǎn)品中,在許多高新技術(shù)領(lǐng)域起著核心作用,被認(rèn)為是高新技術(shù)的特征之一。在這個意義上,數(shù)學(xué)不再僅僅作為一門科學(xué),它是許多技術(shù)的基礎(chǔ),而且直接走向了技術(shù)的前臺。國際上一位學(xué)者提出了“高技術(shù)本質(zhì)上是一種數(shù)學(xué)技術(shù)”的觀點(diǎn)。?????(3)數(shù)學(xué)迅速進(jìn)入一些新領(lǐng)域,為數(shù)學(xué)建模開拓了許多新的處女地。?????隨著數(shù)學(xué)
5、向諸如經(jīng)濟(jì)、人口、生態(tài)、地質(zhì)等所謂非物理領(lǐng)域的滲透,一些交叉學(xué)科如計量經(jīng)濟(jì)學(xué)、人口控制論、數(shù)學(xué)生態(tài)學(xué)、數(shù)學(xué)地質(zhì)學(xué)等應(yīng)運(yùn)而生。一般地說,不存在作為支配關(guān)系的物理定律,當(dāng)用數(shù)學(xué)方法研究這些領(lǐng)域中的定量關(guān)系時,數(shù)學(xué)建模就成為首要的、關(guān)鍵的步驟和這些學(xué)科發(fā)展與應(yīng)用的基礎(chǔ)。在這些領(lǐng)域里建立不同類型、不同方法、不同深淺程度模型的余地相當(dāng)大,為數(shù)學(xué)建模提供了廣闊的新天地。馬克思說過,一門科學(xué)只有成功地運(yùn)用數(shù)學(xué)時,才算達(dá)到了完善的地步。展望21世紀(jì),數(shù)學(xué)必將大踏步地進(jìn)入所有學(xué)科,數(shù)學(xué)建模將迎來蓬勃發(fā)展的新時期。??????????隨著科學(xué)技術(shù)的飛速發(fā)展,人們越來越認(rèn)識到數(shù)學(xué)科學(xué)的重要性:數(shù)學(xué)
6、的思考方式具有根本的重要性,數(shù)學(xué)為組織和構(gòu)造知識提供了方法,將它用于技術(shù)時能使科學(xué)家和工程師生產(chǎn)出系統(tǒng)的、能復(fù)制的、且可以傳播的知識??數(shù)學(xué)科學(xué)對于經(jīng)濟(jì)競爭是必不可少的,數(shù)學(xué)科學(xué)是一種關(guān)鍵性的、普遍的、可實行的技術(shù)。在當(dāng)今高科技與計算機(jī)技術(shù)日新月異且日益普及的社會里,高新技術(shù)的發(fā)展離不開數(shù)學(xué)的支持,沒有良好的數(shù)學(xué)素養(yǎng)已無法實現(xiàn)工程技術(shù)的創(chuàng)新與突破。因此,如何在數(shù)學(xué)教育的過程中培養(yǎng)人們的數(shù)學(xué)素養(yǎng),讓人們學(xué)會用數(shù)學(xué)的知識與方法去處理實際問題,值得數(shù)學(xué)工作者的思考。??大學(xué)生數(shù)學(xué)建?;顒蛹叭珖髮W(xué)生數(shù)學(xué)建模競賽正是在這種形勢下開展并發(fā)展起來的,其目的在于激勵學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提
7、高學(xué)生建立數(shù)學(xué)模型和運(yùn)用計算機(jī)技術(shù)解決實際問題的綜合能力,拓寬學(xué)生的知識面,培養(yǎng)創(chuàng)造精神及合作意識,推動大學(xué)數(shù)學(xué)教學(xué)體系、教學(xué)內(nèi)容和教學(xué)方法的改革[2]。寧波理工學(xué)院在近幾年開展了這項極富意義的活動,組隊參加了全國大學(xué)生數(shù)學(xué)建模競賽。為了更好地組織、指導(dǎo)此項活動,讓更多的學(xué)生投入此項活動并從中受益,我們根據(jù)組織與指導(dǎo)的實踐,對數(shù)學(xué)建模活動的作用與實施談一些認(rèn)識,以期起到深化數(shù)學(xué)教學(xué)改革、推動課程建設(shè)的作用。1?數(shù)學(xué)建模競賽活動的作用與意義??數(shù)學(xué)建模是一個將實際問題用數(shù)學(xué)的語言、方法,去近似刻畫、建立相