資源描述:
《函數(shù)的最大值與最小值》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。
1、3.8函數(shù)的最大值和最小值(第1課時(shí))【教材分析】1.本節(jié)教材的地位與作用本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實(shí)際應(yīng)用,分兩課時(shí),這里是第一課時(shí),它是在學(xué)生已經(jīng)會(huì)求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會(huì)求可導(dǎo)函數(shù)的極值之后進(jìn)行學(xué)習(xí)的,學(xué)好這一節(jié),學(xué)生將會(huì)求更多的函數(shù)的最值,運(yùn)用本節(jié)知識(shí)可以解決科技、經(jīng)濟(jì)、社會(huì)中的一些如何使成本最低、產(chǎn)量最高、效益最大等實(shí)際問(wèn)題.這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實(shí)際等重要的數(shù)學(xué)思想方法,學(xué)好本節(jié),對(duì)于進(jìn)一步完善
2、學(xué)生的知識(shí)結(jié)構(gòu),培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)都具有極為重要的意義.2.教學(xué)重點(diǎn)會(huì)求閉區(qū)間上連續(xù)開(kāi)區(qū)間上可導(dǎo)的函數(shù)的最值.3.教學(xué)難點(diǎn)高三年級(jí)學(xué)生雖然已經(jīng)具有一定的知識(shí)基礎(chǔ),但由于對(duì)求函數(shù)極值還不熟練,特別是對(duì)優(yōu)化解題過(guò)程依據(jù)的理解會(huì)有較大的困難,所以這節(jié)課的難點(diǎn)是理解確定函數(shù)最值的方法.4.教學(xué)關(guān)鍵本節(jié)課突破難點(diǎn)的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內(nèi)全部可能的極值點(diǎn).【教學(xué)目標(biāo)】根據(jù)本節(jié)教材在高中數(shù)學(xué)知識(shí)體系中的地位和作用,結(jié)合學(xué)生已有的認(rèn)知水平,制定本節(jié)如下的教學(xué)目標(biāo):1.知識(shí)和技能目標(biāo)(1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系.(2)進(jìn)一步明確閉區(qū)間[
3、a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值.(3)掌握用導(dǎo)數(shù)法求上述函數(shù)的最大值與最小值的方法和步驟.2.過(guò)程和方法目標(biāo)(1)了解開(kāi)區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值.(2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點(diǎn)處或區(qū)間端點(diǎn)處.(3)會(huì)求閉區(qū)間上連續(xù),開(kāi)區(qū)間內(nèi)可導(dǎo)的函數(shù)的最大、最小值.3.情感和價(jià)值目標(biāo)(1)認(rèn)識(shí)事物之間的的區(qū)別和聯(lián)系.(2)培養(yǎng)學(xué)生觀察事物的能力,能夠自己發(fā)現(xiàn)問(wèn)題,分析問(wèn)題并最終解決問(wèn)題.(3)提高學(xué)生的數(shù)學(xué)能力,培養(yǎng)學(xué)生的創(chuàng)新精神、實(shí)踐能力和理性精神.【教法選擇】根據(jù)皮亞杰的建構(gòu)主義認(rèn)識(shí)論
4、,知識(shí)是個(gè)體在與環(huán)境相互作用的過(guò)程中逐漸建構(gòu)的結(jié)果,而認(rèn)識(shí)則是起源于主客體之間的相互作用.5本節(jié)課在幫助學(xué)生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導(dǎo)學(xué)生通過(guò)觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個(gè)圖象,自己歸納、總結(jié)出函數(shù)最大值、最小值存在的可能位置,進(jìn)而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過(guò)程,讓學(xué)生主動(dòng)地獲得知識(shí),老師只是進(jìn)行適當(dāng)?shù)囊龑?dǎo),而不進(jìn)行全部的灌輸.為突出重點(diǎn),突破難點(diǎn),這節(jié)課主要選擇以合作探究式教學(xué)法組織教學(xué).【學(xué)法指導(dǎo)】對(duì)于求函數(shù)的最值,高三學(xué)生已經(jīng)具備了良好的知識(shí)基礎(chǔ),剩下的問(wèn)題就是有沒(méi)有一種更一般的方法,能運(yùn)用于更多
5、更復(fù)雜函數(shù)的求最值問(wèn)題?教學(xué)設(shè)計(jì)中注意激發(fā)起學(xué)生強(qiáng)烈的求知欲望,使得他們能積極主動(dòng)地觀察、分析、歸納,以形成認(rèn)識(shí),參與到課堂活動(dòng)中,充分發(fā)揮他們作為認(rèn)知主體的作用.【教學(xué)過(guò)程】本節(jié)課的教學(xué),大致按照“創(chuàng)設(shè)情境,鋪墊導(dǎo)入——合作學(xué)習(xí),探索新知——指導(dǎo)應(yīng)用,鼓勵(lì)創(chuàng)新——?dú)w納小結(jié),反饋回授”四個(gè)環(huán)節(jié)進(jìn)行組織.教學(xué)環(huán)節(jié)教學(xué)內(nèi)容設(shè)計(jì)意圖一、創(chuàng)設(shè)情境,鋪墊導(dǎo)入1.問(wèn)題情境:在日常生活、生產(chǎn)和科研中,常常會(huì)遇到求什么條件下可以使成本最低、產(chǎn)量最大、效益最高等問(wèn)題,這往往可以歸結(jié)為求函數(shù)的最大值與最小值.如圖,有一長(zhǎng)80cm,寬60cm的矩形不銹鋼薄板,用此薄板折成一個(gè)長(zhǎng)方體
6、無(wú)蓋容器,要分別過(guò)矩形四個(gè)頂點(diǎn)處各挖去一個(gè)全等的小正方形,按加工要求,長(zhǎng)方體的高不小于10cm且不大于20cm.設(shè)長(zhǎng)方體的高為xcm,體積為Vcm3.問(wèn)x為多大時(shí),V最大?并求這個(gè)最大值.解:由長(zhǎng)方體的高為xcm,可知其底面兩邊長(zhǎng)分別是(80-2x)cm,(60-2x)cm,(10≤x≤20).所以體積V與高x有以下函數(shù)關(guān)系V=(80-2x)(60-2x)x=4(40-x)(30-x)x.2.引出課題:分析函數(shù)關(guān)系可以看出,以前學(xué)過(guò)的方法在這個(gè)問(wèn)題中較難湊效,這節(jié)課我們將學(xué)習(xí)一種很重要的方法,來(lái)求某些函數(shù)的最值.以實(shí)例引發(fā)思考,有利于學(xué)生感受到數(shù)學(xué)來(lái)源于現(xiàn)實(shí)生
7、活,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí),同時(shí)營(yíng)造出寬松、和諧、積極主動(dòng)的課堂氛圍,在新舊知識(shí)的矛盾沖突中,激發(fā)起學(xué)生的探究熱情.實(shí)際問(wèn)題中,函數(shù)和自變量x范圍的設(shè)置,都緊扣本節(jié)課的核心:確定閉區(qū)間上的連續(xù)函數(shù)的最(大)值.通過(guò)運(yùn)用幾何畫(huà)板演示,增強(qiáng)直觀性,幫助學(xué)生迅速準(zhǔn)確地發(fā)現(xiàn)相關(guān)的數(shù)量關(guān)系.提出問(wèn)題后,引導(dǎo)學(xué)生發(fā)現(xiàn),求所列函數(shù)的最大值是以前學(xué)習(xí)過(guò)的方法不能解決的,由此引出新課,使學(xué)生深感繼續(xù)學(xué)習(xí)新知識(shí)的必要性,為進(jìn)一步的研究作好鋪墊.5教學(xué)環(huán)節(jié)教學(xué)內(nèi)容設(shè)計(jì)意圖二、合作學(xué)習(xí),探索新知1.我們知道,在閉區(qū)間[a,b]上連續(xù)的函數(shù)f(x)在[a,b]上必有最大值與最小值.問(wèn)題1
8、:如果是在開(kāi)區(qū)間(a,b)上情況如何?