資源描述:
《第02講函數(shù)概念與表示》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、《新課標(biāo)》高三數(shù)學(xué)(人教版)第一輪復(fù)習(xí)單元講座第二講函數(shù)概念與表示一.課標(biāo)要求1.通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡單函數(shù)的定義域和值域;了解映射的概念;2.在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D象法、列表法、解析法)表示函數(shù);3.通過具體實(shí)例,了解簡單的分段函數(shù),并能簡單應(yīng)用;4.通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結(jié)合具體
2、函數(shù),了解奇偶性的含義;5.學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。二.命題走向函數(shù)是整個(gè)高中數(shù)學(xué)的重點(diǎn),其中函數(shù)思想是最重要的數(shù)學(xué)思想方法,函數(shù)問題在歷年的高考中都占據(jù)相當(dāng)大的比例。從近幾年來看,對(duì)本部分內(nèi)容的考察形勢穩(wěn)中求變,向著更靈活的的方向發(fā)展,對(duì)于函數(shù)的概念及表示多以下面的形式出現(xiàn):通過具體問題(幾何問題、實(shí)際應(yīng)用題)找出變量間的函數(shù)關(guān)系,再求出函數(shù)的定義域、值域,進(jìn)而研究函數(shù)性質(zhì),尋求問題的結(jié)果。高考對(duì)函數(shù)概念與表示考察是以選擇或填空為主,以解答題形式出現(xiàn)的可能性相對(duì)較小,本節(jié)知識(shí)作為工具和其他知識(shí)結(jié)合起來命
3、題的可能性依然很大。預(yù)測2008年高考對(duì)本節(jié)的考察是:1.題型是1個(gè)選擇和一個(gè)填空;2.熱點(diǎn)是函數(shù)概念及函數(shù)的工具作用,以中等難度、題型新穎的試題綜合考察函數(shù)成為新的熱點(diǎn)。三.要點(diǎn)精講1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)。記作:y=f(x),x∈A。其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)
4、x∈A}叫做函
5、數(shù)的值域。注意:(1)“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;(2)函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x。2.構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域(1)解決一切函數(shù)問題必須認(rèn)真確定該函數(shù)的定義域,函數(shù)的定義域包含三種形式:①自然型:指函數(shù)的解析式有意義的自變量x第15頁共15頁的取值范圍(如:分式函數(shù)的分母不為零,偶次根式函數(shù)的被開方數(shù)為非負(fù)數(shù),對(duì)數(shù)函數(shù)的真數(shù)為正數(shù),等等);②限制型:指命題的條件或人為對(duì)自變量x的限制,這是函數(shù)學(xué)習(xí)中重點(diǎn),往往
6、也是難點(diǎn),因?yàn)橛袝r(shí)這種限制比較隱蔽,容易犯錯(cuò)誤;③實(shí)際型:解決函數(shù)的綜合問題與應(yīng)用問題時(shí),應(yīng)認(rèn)真考察自變量x的實(shí)際意義。(2)求函數(shù)的值域是比較困難的數(shù)學(xué)問題,中學(xué)數(shù)學(xué)要求能用初等方法求一些簡單函數(shù)的值域問題。①配方法(將函數(shù)轉(zhuǎn)化為二次函數(shù));②判別式法(將函數(shù)轉(zhuǎn)化為二次方程);③不等式法(運(yùn)用不等式的各種性質(zhì));④函數(shù)法(運(yùn)用基本函數(shù)性質(zhì),或抓住函數(shù)的單調(diào)性、函數(shù)圖象等)。3.兩個(gè)函數(shù)的相等:函數(shù)的定義含有三個(gè)要素,即定義域A、值域C和對(duì)應(yīng)法則f。當(dāng)函數(shù)的定義域及從定義域到值域的對(duì)應(yīng)法則確定之后,函數(shù)的值域也就隨之確
7、定。因此,定義域和對(duì)應(yīng)法則為函數(shù)的兩個(gè)基本條件,當(dāng)且僅當(dāng)兩個(gè)函數(shù)的定義域和對(duì)應(yīng)法則都分別相同時(shí),這兩個(gè)函數(shù)才是同一個(gè)函數(shù)。4.區(qū)間(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示。5.映射的概念一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從集合A到集合B的一個(gè)映射。記作“f:AB”。函數(shù)是建立在兩個(gè)非空數(shù)集間的一種對(duì)應(yīng),若將其中的條件“非空數(shù)集”弱化為“任意兩個(gè)非空集合”
8、,按照某種法則可以建立起更為普通的元素之間的對(duì)應(yīng)關(guān)系,這種的對(duì)應(yīng)就叫映射。注意:(1)這兩個(gè)集合有先后順序,A到B的射與B到A的映射是截然不同的.其中f表示具體的對(duì)應(yīng)法則,可以用漢字?jǐn)⑹?。?)“都有唯一”什么意思?包含兩層意思:一是必有一個(gè);二是只有一個(gè),也就是說有且只有一個(gè)的意思。6.常用的函數(shù)表示法(1)解析法:就是把兩個(gè)變量的函數(shù)關(guān)系,用一個(gè)等式來表示,這個(gè)等式叫做函數(shù)的解析表達(dá)式,簡稱解析式;(2)列表法:就是列出表格來表示兩個(gè)變量的函數(shù)關(guān)系;(3)圖象法:就是用函數(shù)圖象表示兩個(gè)變量之間的關(guān)系。7.分段函數(shù)若
9、一個(gè)函數(shù)的定義域分成了若干個(gè)子區(qū)間,而每個(gè)子區(qū)間的解析式不同,這種函數(shù)又稱分段函數(shù);8.復(fù)合函數(shù)若y=f(u),u=g(x),x?(a,b),u?(m,n),那么y=f[g(x)]稱為復(fù)合函數(shù),u第15頁共15頁稱為中間變量,它的取值范圍是g(x)的值域。四.典例解析題型1:函數(shù)概念例1.(1)設(shè)函數(shù)(2)(2001上海理,1)設(shè)