利用數(shù)形結合思想求解

利用數(shù)形結合思想求解

ID:19408744

大小:839.58 KB

頁數(shù):30頁

時間:2018-10-02

 利用數(shù)形結合思想求解_第1頁
 利用數(shù)形結合思想求解_第2頁
 利用數(shù)形結合思想求解_第3頁
 利用數(shù)形結合思想求解_第4頁
 利用數(shù)形結合思想求解_第5頁
資源描述:

《 利用數(shù)形結合思想求解》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在學術論文-天天文庫。

1、第4講利用數(shù)形結合思想求解一、方法技巧1.數(shù)形結合的思想就是根據(jù)數(shù)(量)與形(圖)的對應關系,把數(shù)與形結合起來進行分析研究,把抽象的數(shù)學語言與直觀的圖形結合起來;使復雜的問題簡單化,抽象的問題具體化;通過圖形的描述、代數(shù)的論證來研究和解決數(shù)學問題的一種思想方法。2數(shù)形結合的思想,其應用大致可以分為兩種情形:一是“數(shù)”中構“形”,用形解決數(shù)的問題,常見于借用數(shù)軸、函數(shù)圖像、幾何圖形來求解代數(shù)問題,可使代數(shù)問題幾何化,二是“形”中覓“數(shù)”,用數(shù)解決形的問題,常見于運用恒等變形、建立方程(組)、面積轉換等求解幾何問題,可使幾何問題代數(shù)化.3.數(shù)形結合思想在初

2、中數(shù)學中應用非常廣泛,本講主要講解:(1)借助函數(shù)圖像求解方程(組)、不等式(組);(2)借助數(shù)軸化簡絕對值;(3)構造數(shù)學模型解實際問題二、應用舉例類型一借助函數(shù)圖像求解方程(組)、不等式(組)(一)借助一次函數(shù)圖象求解【例題1】(2015·遼陽)如圖,直線與(且a,b為常數(shù))的交點坐標為(3,﹣1),則關于x的不等式的解集為()A.x≥﹣1B.x≥3C.x≤﹣1D.x≤3【答案】D【解析】試題分析:函數(shù)與(且a,b為常數(shù))的交點坐標為(3,﹣1),求不定式的解集,就是看函數(shù)在什么范圍內(nèi)的圖象對應的點在函數(shù)的圖象上面.試題解析:解:從圖象得到,當x≤

3、3時,的圖象對應的點在函數(shù)的圖象上面,∴不等式的解集為x≤3.故選D.考點:一次函數(shù)與一元一次不等式.點評:本題考查了一次函數(shù)與不等式(組)關系及數(shù)形結合思想的運用.解決此題的關鍵是仔細觀察圖形,注意幾個關鍵點(交點、原點等),做到數(shù)形結合.【難度】較易(二)借助一次函數(shù)與反比例函數(shù)圖象求解【例題2】(2015·營口)如圖,在平面直角坐標系中,A(-3,1),以點O為直角頂點作等腰直角三角形AOB,雙曲線在第一象限內(nèi)的圖象經(jīng)過點B,設直線AB的解析式為,當時,的取值范圍是().A.B.或C.D.或【答案】D【解析】試題分析:由△AOB是等腰直角三角形,

4、先求B點坐標,然后利用待定系數(shù)法可求雙曲線和直線的解析式,然后將與聯(lián)立,求得雙曲線與直線交點的橫坐標,然后根據(jù)圖像即可確定出x的取值范圍.試題解析:解:如圖所示:∵△AOB是等腰直角三角形,∴,又∵,∴,∵點A的坐標為(-3,1),∴點B的坐標為(1,3),將B(1,3)代入反比例函數(shù)的解析式得:,∴k=3,∴,將A(-3,1),B(1,3)代入直線AB的解析式得:,解得:,∴直線AB的解析式為,將與聯(lián)立得:,解得:,,當y1>y2時,雙曲線位于直線上方,∴x的取值范圍是:x<-6或0<x<1.故選D.考點:反比例函數(shù)與一次函數(shù)的交點問題點評:本題主要

5、考查了反比例函數(shù)與一次函數(shù)的交點問題,求得雙曲線和直線的交點坐標是解題的關鍵,同時本題還考查了函數(shù)與不等式的關系:從函數(shù)角度看,y1>y2就是雙曲線位于直線上方部分所有點的橫坐標的集合;從不等式的角度看,y1>y2就是求不等式的解集.【難度】一般【例題3】如圖,直線y=k1x+b與雙曲線相交于A(1,2),B(m,-1)兩點.(1)求直線和雙曲線的解析式;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點,且x1<x2<0<x3,請直接寫出y1,y2,y3的大小關系式;(3)觀察圖象,請直接寫出不等式的解集.【答案】(1

6、)y=x+1(2)y2<y1<y3(3)x>1或-2<x<0【解析】試題分析:(1)將A坐標代入反比例解析式中求出k2的值,確定出雙曲線解析式,將B坐標代入反比例解析式求出m的值,確定出B坐標,將A與B坐標代入一次函數(shù)解析式中求出k1與b的值,即可確定出直線解析式。(2)根據(jù)三點橫坐標的正負,得到A2與A3位于第一象限,對應函數(shù)值大于0,A1位于第三象限,函數(shù)值小于0,且在第一象限為減函數(shù),即可得到大小關系式:∵x1<0<x2<x3,且反比例函數(shù)在第一象限為減函數(shù),∴A2與A3位于第一象限,即y2>y3>0,A1位于第三象限,即y1<0,則y2>y3>

7、y1。(3)由兩函數(shù)交點坐標,利用圖象即可得出所求不等式的解集.試題解析:解:(1)∵雙曲線經(jīng)過點A(1,2),∴k2=2,∴雙曲線的解析式為.∵點B(m,-1)在雙曲線上,∴m=-2,則B(-2,-1).由點A(1,2),B(-2,-1)在直線y=k1x+b上,得解得:,∴直線的解析式為y=x+1.(2)∵在第三象限內(nèi)y隨x的增大而減小,∴y2<y1<0.又∵y3是正數(shù),故y3>0,∴y2<y1<y3.(3)由A(1,2),B(-2,-1),當,即y1>y2時,利用函數(shù)圖像可知直線在雙曲線上方的橫坐標即為所求,∴x>1或-2<x<0.考點:反比例函數(shù)

8、與一次函數(shù)的交點問題,曲線上點的坐標與方程的關系.點評:此題考查了反比例函數(shù)與一次函數(shù)的交點問

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。