資源描述:
《貝葉斯公式的應(yīng)用》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、貝葉斯公式的應(yīng)用1綜述在U常生活屮,我們會(huì)遇到許多由因求果的問(wèn)題,也會(huì)遇到許多由果溯因的問(wèn)題。比如某種傳染疾病已經(jīng)出現(xiàn).尋找傳染源;機(jī)械發(fā)生了故障,尋找故障源就是典型的南果溯因問(wèn)題等。在一定條件十這類由果溯因問(wèn)題可通過(guò)W葉斯公式來(lái)求解。以T的例子來(lái)說(shuō)明貝葉斯公式的應(yīng)用。貝葉斯公式的定義給出了事件B隨著兩兩互斥的事件a,,a2,...,人中某一個(gè)出現(xiàn)而出現(xiàn)的概率。如果反過(guò)來(lái)知道事件B已出現(xiàn),但不知道它由于冬軋...,'中那一個(gè)事件出現(xiàn)而與之同時(shí)出現(xiàn),這樣,便產(chǎn)生丫在事件5已經(jīng)出現(xiàn)出現(xiàn)的條件下,求事件/^=1,2,..72)出現(xiàn)的條件概率的問(wèn)題,解決這類問(wèn)題有如下公式:2
2、定義設(shè),…,墳為Q的一個(gè)分割,即S,S2,…,氏互不相容,且=£2,如果>/=10,尸(B,)=00=1,2,...,/!),則P(g,.M)=,Z=1,2,…,no7=1貝葉斯公式在市場(chǎng)預(yù)測(cè)中的應(yīng)用我們知道,國(guó)外的舊車市場(chǎng)很多。出國(guó)留學(xué)或訪問(wèn)的人有時(shí)花很少的錢就可以買一輛和當(dāng)不錯(cuò)的車,開(kāi)上兒年也沒(méi)問(wèn)題。但運(yùn)氣不好時(shí),開(kāi)不了兒天就這兒壞那兒壞的,修車的錢是買車錢的好幾倍,經(jīng)常出毛病帶來(lái)的煩惱就史別提了。為了幫助買IH車的人了解各種IH車的質(zhì)量和性能,岡外出版一種專門介紹各品牌IH車以及各年代不同車型各主要部件質(zhì)量數(shù)據(jù)的舊車雜志。比如有個(gè)買主想買某種型號(hào)的舊車,他從舊車雜
3、志上可發(fā)現(xiàn)這種舊車平均有30%的傳動(dòng)裝置有質(zhì)量問(wèn)題。除了從舊車雜志上尋找有關(guān)舊車質(zhì)量的信息外,在舊車市場(chǎng)上買舊車時(shí)還需要有憒車的內(nèi)行來(lái)幫忙。比如可以找會(huì)修車的朋友幫助開(kāi)一開(kāi),檢查各主耍部件的質(zhì)暈。因?yàn)榕f車雜志上給出的是某種車輛質(zhì)量的平均信息,就要買的某一輛來(lái)講可能是好的傳動(dòng)裝置,也可能會(huì)有問(wèn)題。比較常見(jiàn)的方法是花一點(diǎn)錢請(qǐng)個(gè)汽車修理工幫助開(kāi)幾圈,請(qǐng)他幫助判斷一不傳動(dòng)裝置和其他部件的質(zhì)量。當(dāng)然,盡管汽車修理工很有經(jīng)驗(yàn),也難免有判斷不準(zhǔn)的吋候。假定從過(guò)去的記錄知道某個(gè)修理工對(duì)于傳動(dòng)裝置有間題的車,其屮90%他可以判斷出有問(wèn)題,另有10%他發(fā)現(xiàn)不了其中的問(wèn)題。對(duì)于傳動(dòng)裝置沒(méi)問(wèn)題
4、的車,他的判斷也差不多同樣出色,其中80%的車他會(huì)判斷沒(méi)問(wèn)題,另外的20%他會(huì)認(rèn)為宥問(wèn)題,即發(fā)生判斷的錯(cuò)誤。根據(jù)這些已知信息請(qǐng)你幫助買主計(jì)算如下的W題:1、若買主不雇用修理工,他買到一輛傳動(dòng)裝置有問(wèn)題的車的概率是多少?2、若買主花錢雇修理工幫他挑選和判斷,當(dāng)修理工說(shuō)該車“傳動(dòng)裝置有問(wèn)題”時(shí)該車傳動(dòng)裝置真有W題的概率是多少?3、當(dāng)修理工說(shuō)該車“傳動(dòng)裝置沒(méi)問(wèn)題”時(shí)而該車傳動(dòng)裝置真有問(wèn)題的概率是多少?解1、問(wèn)題是簡(jiǎn)單的,即有30%的uj能性買到一輛有傳動(dòng)裝置間題的舊車,我們?cè)谶@里只利用舊車雜志的信息。第2問(wèn)和第3問(wèn)是W葉斯估計(jì)或者利用W葉斯公式進(jìn)行決策的問(wèn)題。2、我們知道,貝
5、葉斯公式是個(gè)條件概率的公式,即^P(Ay.)P(fi/Ay)7=1其屮//5)稱為事件的后驗(yàn)概率,即在已知事件《發(fā)生條件'卜*事件發(fā)生的概率;P(AZ)是事件的先驗(yàn)概率;P(B/AZ)稱為樣本信息,即在歡發(fā)生條件下事件的概率。對(duì)于第2問(wèn),我們不妨令:砟=實(shí)際有問(wèn)題,名=實(shí)際沒(méi)問(wèn)題=修理工判斷“有問(wèn)題”,B2=修理工判斷“沒(méi)問(wèn)題”則口」*將貝葉斯公式改寫成:P(實(shí)際有問(wèn)題/修理工判斷“有問(wèn)題”)=P(實(shí)際有問(wèn)題)P(修理工判斷“有M題”/實(shí)際有悶題)(實(shí)阮權(quán)問(wèn)題)P(修理工判斷“釘M題”/實(shí)際初問(wèn)題)+P(實(shí)際沒(méi)問(wèn)題)P(修理工判斷“侖問(wèn)題”/實(shí)際沒(méi)悶題)P⑷尸(什/A,
6、)根據(jù)已知條件,計(jì)算式屮芥項(xiàng)的概率分別為:尸(八)=戸(實(shí)際有問(wèn)題)=0.3尸(4)=/^實(shí)際沒(méi)問(wèn)題)=0.7(修理工判斷“冇問(wèn)題”/實(shí)際冇問(wèn)題)=0.9八尋//12)=戶(修理工判斷“冇問(wèn)題”/實(shí)際沒(méi)M題)=0.2戶(52/4)二/>(修理工判斷“沒(méi)問(wèn)題”/實(shí)際沒(méi)問(wèn)題)=0.1P(民/A_)=P(修理工判斷“沒(méi)問(wèn)題”/實(shí)際沒(méi)問(wèn)題)=0.8代入上式P(實(shí)際有問(wèn)題/修理工判斷“有問(wèn)題”)"p(A)m/A)+^2)m/A)0.3x0.9-03x0.9+0.7x0.2=0.66這個(gè)結(jié)果表明,當(dāng)修理工判斷某輛車的傳動(dòng)裝置“有問(wèn)題”時(shí),實(shí)際有問(wèn)題的概率為0.66,即修理工的判斷宥
7、問(wèn)題使得真宥問(wèn)題的概率由0.30增長(zhǎng)到0.66。3、八實(shí)際有問(wèn)題/修理工判斷“沒(méi)問(wèn)題”)=P(實(shí)際冇問(wèn)題)A修理丄^祈“沒(méi)問(wèn)題”/實(shí)際冇問(wèn)題)_八實(shí)際有問(wèn)題)八修J肛判斷“沒(méi)I'nj題”/實(shí)際有I'nj題)+P(實(shí)際沒(méi)I'nj題)P(修肛判斷“沒(méi)問(wèn)題”/實(shí)際沒(méi)問(wèn)題)p(A)p(b,/a)~p(A)p(b2/A)+^2)^2/A)由問(wèn)題2知道A實(shí)際有問(wèn)題/修理工判斷“沒(méi)問(wèn)題”)P(A,)P(g2/A)~P(A)P(B2/A)+^(A2)P(B2/A)_0.1x0.3~03x0.1+0.7x0.8=0.05這個(gè)結(jié)果表明,當(dāng)修理工判斷某輛車的傳