隨機事件及其概率(1)

隨機事件及其概率(1)

ID:23325053

大?。?65.50 KB

頁數(shù):12頁

時間:2018-11-07

隨機事件及其概率(1)_第1頁
隨機事件及其概率(1)_第2頁
隨機事件及其概率(1)_第3頁
隨機事件及其概率(1)_第4頁
隨機事件及其概率(1)_第5頁
資源描述:

《隨機事件及其概率(1)》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫。

1、第1章隨機事件及其概率習(xí)題解答第1章隨機變量及其概率1,寫出下列試驗的樣本空間:(1)連續(xù)投擲一顆骰子直至6個結(jié)果中有一個結(jié)果出現(xiàn)兩次,記錄投擲的次數(shù)。(2)連續(xù)投擲一顆骰子直至6個結(jié)果中有一個結(jié)果接連出現(xiàn)兩次,記錄投擲的次數(shù)。(3)連續(xù)投擲一枚硬幣直至正面出現(xiàn),觀察正反面出現(xiàn)的情況。(4)拋一枚硬幣,若出現(xiàn)H則再拋一次;若出現(xiàn)T,則再拋一顆骰子,觀察出現(xiàn)的各種結(jié)果。解:(1);(2);(3);(4)。2,設(shè)是兩個事件,已知,求。解:,,,3,在100,101,…,999這900個3位數(shù)中,任取一個3位數(shù),求不包含數(shù)字1個概率。12第1章隨機事件及其概率習(xí)題解答解:在100

2、,101,…,999這900個3位數(shù)中不包含數(shù)字1的3位數(shù)的個數(shù)為,所以所求得概率為4,在僅由數(shù)字0,1,2,3,4,5組成且每個數(shù)字之多出現(xiàn)一次的全體三位數(shù)中,任取一個三位數(shù)。(1)求該數(shù)是奇數(shù)的概率;(2)求該數(shù)大于330的概率。解:僅由數(shù)字0,1,2,3,4,5組成且每個數(shù)字之多出現(xiàn)一次的全體三位數(shù)的個數(shù)有個。(1)該數(shù)是奇數(shù)的可能個數(shù)為個,所以出現(xiàn)奇數(shù)的概率為(2)該數(shù)大于330的可能個數(shù)為,所以該數(shù)大于330的概率為5,袋中有5只白球,4只紅球,3只黑球,在其中任取4只,求下列事件的概率。(1)4只中恰有2只白球,1只紅球,1只黑球。(2)4只中至少有2只紅球。(

3、3)4只中沒有白球。解:(1)所求概率為;12第1章隨機事件及其概率習(xí)題解答(2)所求概率為;(3)所求概率為。6,一公司向個銷售點分發(fā)張?zhí)嶝泦?,設(shè)每張?zhí)嶝泦畏职l(fā)給每一銷售點是等可能的,每一銷售點得到的提貨單不限,求其中某一特定的銷售點得到張?zhí)嶝泦蔚母怕?。解:根?jù)題意,張?zhí)嶝泦畏职l(fā)給個銷售點的總的可能分法有種,某一特定的銷售點得到張?zhí)嶝泦蔚目赡芊址ㄓ蟹N,所以某一特定的銷售點得到張?zhí)嶝泦蔚母怕蕿椤?,將3只球(1~3號)隨機地放入3只盒子(1~3號)中,一只盒子裝一只球。若一只球裝入與球同號的盒子,稱為一個配對。(1)求3只球至少有1只配對的概率。(2)求沒有配對的概率。解:

4、根據(jù)題意,將3只球隨機地放入3只盒子的總的放法有3!=6種:123,132,213,231,312,321;沒有1只配對的放法有2種:312,231。至少有1只配對的放法當(dāng)然就有6-2=4種。所以(2)沒有配對的概率為;(1)至少有1只配對的概率為。12第1章隨機事件及其概率習(xí)題解答8,(1)設(shè),求,.(2)袋中有6只白球,5只紅球,每次在袋中任取1只球,若取到白球,放回,并放入1只白球;若取到紅球不放回也不放入另外的球。連續(xù)取球4次,求第一、二次取到白球且第三、四次取到紅球的概率。解:(1)由題意可得,所以,,,,。(2)設(shè)表示“第次取到白球”這一事件,而取到紅球可以用它

5、的補來表示。那么第一、二次取到白球且第三、四次取到紅球可以表示為,它的概率為(根據(jù)乘法公式)。9,一只盒子裝有2只白球,2只紅球,在盒中取球兩次,每次任取一只,做不放回抽樣,已知得到的兩只球中至少有一只是紅球,求另一只也是紅球的概率。解:設(shè)“得到的兩只球中至少有一只是紅球”記為事件,“12第1章隨機事件及其概率習(xí)題解答另一只也是紅球”記為事件。則事件的概率為(先紅后白,先白后紅,先紅后紅)所求概率為10,一醫(yī)生根據(jù)以往的資料得到下面的訊息,他的病人中有5%的人以為自己患癌癥,且確實患癌癥;有45%的人以為自己患癌癥,但實際上未患癌癥;有10%的人以為自己未患癌癥,但確實患了

6、癌癥;最后40%的人以為自己未患癌癥,且確實未患癌癥。以表示事件“一病人以為自己患癌癥”,以表示事件“病人確實患了癌癥”,求下列概率。(1);(2);(3);(4);(5)。解:(1)根據(jù)題意可得;;(2)根據(jù)條件概率公式:;(3);(4);12第1章隨機事件及其概率習(xí)題解答(5)。11,在11張卡片上分別寫上engineering這11個字母,從中任意連抽6張,求依次排列結(jié)果為ginger的概率。解:根據(jù)題意,這11個字母中共有2個g,2個i,3個n,3個e,1個r。從中任意連抽6張,由獨立性,第一次必須從這11張中抽出2個g中的任意一張來,概率為2/11;第二次必須從剩

7、余的10張中抽出2個i中的任意一張來,概率為2/10;類似地,可以得到6次抽取的概率。最后要求的概率為;或者。12,據(jù)統(tǒng)計,對于某一種疾病的兩種癥狀:癥狀A(yù)、癥狀B,有20%的人只有癥狀A(yù),有30%的人只有癥狀B,有10%的人兩種癥狀都有,其他的人兩種癥狀都沒有。在患這種病的人群中隨機地選一人,求(1)該人兩種癥狀都沒有的概率;(2)該人至少有一種癥狀的概率;(3)已知該人有癥狀B,求該人有兩種癥狀的概率。解:(1)根據(jù)題意,有40%的人兩種癥狀都沒有,所以該人兩種癥狀都沒有的概率為;(2)至少有一種癥狀的概率為;

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。