關(guān)注學(xué)習(xí)反思 促進(jìn)自主學(xué)習(xí)

關(guān)注學(xué)習(xí)反思 促進(jìn)自主學(xué)習(xí)

ID:23718844

大?。?1.00 KB

頁(yè)數(shù):5頁(yè)

時(shí)間:2018-11-10

關(guān)注學(xué)習(xí)反思 促進(jìn)自主學(xué)習(xí)_第1頁(yè)
關(guān)注學(xué)習(xí)反思 促進(jìn)自主學(xué)習(xí)_第2頁(yè)
關(guān)注學(xué)習(xí)反思 促進(jìn)自主學(xué)習(xí)_第3頁(yè)
關(guān)注學(xué)習(xí)反思 促進(jìn)自主學(xué)習(xí)_第4頁(yè)
關(guān)注學(xué)習(xí)反思 促進(jìn)自主學(xué)習(xí)_第5頁(yè)
資源描述:

《關(guān)注學(xué)習(xí)反思 促進(jìn)自主學(xué)習(xí)》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫(kù)

1、關(guān)注學(xué)習(xí)反思促進(jìn)自主學(xué)習(xí)進(jìn)入新世紀(jì)以后,我們面臨的問(wèn)題很多,其中最關(guān)鍵的就是怎樣使產(chǎn)業(yè)升級(jí),在這方面起重要作用是人才。究竟需要什么樣的人才呢,專(zhuān)家們指出需要以下四種素質(zhì)的人才:第一,有新觀念;第二,能夠不斷從事技術(shù)創(chuàng)新;第三,善于經(jīng)營(yíng)和開(kāi)拓市場(chǎng);第四、有團(tuán)隊(duì)精神。為此數(shù)學(xué)教學(xué)中應(yīng)加強(qiáng)學(xué)生這四個(gè)方面能力的培養(yǎng)?!  ∫?、在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的新觀念、新思想   新觀念中不僅包含對(duì)事物的新認(rèn)識(shí)、新思想,而且包含一個(gè)不斷學(xué)習(xí)的過(guò)程。為此作為新人才就必須學(xué)會(huì)學(xué)習(xí),只有不斷地學(xué)習(xí),獲取新知識(shí)更新觀念,形成新認(rèn)識(shí)。在數(shù)學(xué)史上,法國(guó)大數(shù)學(xué)家笛卡爾在學(xué)生時(shí)代喜歡博覽群書(shū),認(rèn)識(shí)到代數(shù)與幾何割裂的弊病,他用代數(shù)

2、方法研究幾何的作圖問(wèn)題,指出了作圖問(wèn)題與求方程組的解之間的關(guān)系,通過(guò)具體問(wèn)題,提出了坐標(biāo)法,把幾何曲線表示成代數(shù)方程,斷言曲線方程的次數(shù)與坐標(biāo)軸的選擇無(wú)關(guān),用方程的次數(shù)對(duì)曲線加以分類(lèi),認(rèn)識(shí)到了曲線的交點(diǎn)與方程組的解之間的關(guān)系。主張把代數(shù)與幾何相結(jié)合,把量化方法用于幾何研究的新觀點(diǎn),從而創(chuàng)立解析幾何學(xué)。作為數(shù)學(xué)教師在教學(xué)中不僅要教學(xué)生學(xué)會(huì),更應(yīng)教學(xué)生會(huì)學(xué)。在不等式證明的教學(xué)中,我重點(diǎn)教學(xué)生遇到問(wèn)題怎么分析,靈活運(yùn)用比較、分析、綜合三種基本證法,同時(shí)引導(dǎo)學(xué)生用三角、復(fù)數(shù)、幾何等新方法研究證明不等式?!   ±∫阎猘>=0,b>=0,且a+b=1,求證 (a+2)(a+2)+(b+2)(b+2)

3、>=25/2      證明這個(gè)不等式方法較多,除基本證法外,可利用二次函數(shù)的求最值、三角代換、構(gòu)造直角三角形等途徑證明。若將a+b=1(a>=0,b>=0)作為平面直角坐標(biāo)系內(nèi)的線段,也能用解析幾何知識(shí)求證。證法如下:在平面直角坐標(biāo)系內(nèi)取直線段x+y=1,(0=<x>=1),(a+2)(a+2)+(b+2)(b+2)看作點(diǎn)(-2,-2)與線段x+y=1上的點(diǎn)(a,b)之間的距離的平方。由于點(diǎn)到一直線的距離是這點(diǎn)與該直線上任意一點(diǎn)之間的距離的最小值。而d*d=(-2-2-1

4、)/2=25/2,所以(a+2)(a+2)+(b+2)(b+2)>=25/2。“授之以魚(yú),不如授之以漁”,方法的掌握,

5、思想的形成,才能使學(xué)生受益終生。  二、在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的創(chuàng)新能力    創(chuàng)新能力在數(shù)學(xué)教學(xué)中主要表現(xiàn)對(duì)已解決問(wèn)題尋求新的解法?!皩W(xué)起于思,思源于疑”,學(xué)生探索知識(shí)的思維過(guò)程總是從問(wèn)題開(kāi)始,又在解決問(wèn)題中得到發(fā)展和創(chuàng)新。教學(xué)過(guò)程中學(xué)生在教師創(chuàng)設(shè)的情境下,自己動(dòng)手操作、動(dòng)腦思考、動(dòng)口表達(dá),探索未知領(lǐng)域,尋找客觀真理,成為發(fā)現(xiàn)者,要讓學(xué)生自始至終地參與這一探索過(guò)程,發(fā)展學(xué)生創(chuàng)新能力。如在球的體積教學(xué)中,我利用課余時(shí)間將學(xué)生分為三組,要求第一組每人做半徑為10厘米的半球;第二組每人做半徑為10厘米高10厘米圓錐;第三組每人做半徑為10厘米高10厘米圓柱。每組出一人又組成許多小組,各小組分別將圓

6、錐放入圓柱中,然后用半球裝滿土倒入圓柱中,學(xué)生們發(fā)現(xiàn)它們之間的關(guān)系,半球的體積等于圓柱與圓錐體積之差。球的體積公式的推導(dǎo)過(guò)程,集公理化思想、轉(zhuǎn)化思想、等積類(lèi)比思想及割補(bǔ)轉(zhuǎn)換方法之大成,就是這些思想方法靈活運(yùn)用的完美范例。教學(xué)中再次通過(guò)展現(xiàn)體積問(wèn)題解決的思路分析,形成系統(tǒng)的條理的體積公式的推導(dǎo)線索,把這些思想方法明確地呈現(xiàn)在學(xué)生的眼前。學(xué)生才能從中領(lǐng)悟到當(dāng)初數(shù)學(xué)家的創(chuàng)造思維進(jìn)程,激發(fā)學(xué)生的創(chuàng)造思維和創(chuàng)新能力。  三、在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生經(jīng)營(yíng)和開(kāi)拓市場(chǎng)的能力   一切數(shù)學(xué)知識(shí)都于現(xiàn)實(shí)生活中,同時(shí),現(xiàn)實(shí)生活中許多問(wèn)題都需要用數(shù)學(xué)知識(shí)、數(shù)學(xué)思想方法去思考解決。比如,洗衣機(jī)按什么程序運(yùn)行有利節(jié)約用水;

7、漁場(chǎng)主怎樣經(jīng)營(yíng)既能獲得最高產(chǎn)量,又能實(shí)現(xiàn)可持續(xù)發(fā)展;一件好的產(chǎn)品設(shè)計(jì)怎樣營(yíng)銷(xiāo)方案才能快速得到市場(chǎng)認(rèn)可,產(chǎn)生良好的經(jīng)濟(jì)效益。為此數(shù)學(xué)教學(xué)中應(yīng)有意識(shí)地培養(yǎng)學(xué)生經(jīng)營(yíng)和開(kāi)拓市場(chǎng)的能力。善于經(jīng)營(yíng)和開(kāi)拓市場(chǎng)的能力在數(shù)學(xué)教學(xué)中主要體現(xiàn)為對(duì)一個(gè)數(shù)學(xué)問(wèn)題或?qū)嶋H問(wèn)題如何設(shè)計(jì)出最佳的解決方案或模型。如證明組合恒等式Cnm=Cnm-1+Cn-1m-1,一般分析是利用組合數(shù)的性質(zhì),通過(guò)一些適當(dāng)?shù)挠?jì)算或化簡(jiǎn)來(lái)完成。但是可以讓學(xué)生思考能否利用組合數(shù)的意義來(lái)證明。即構(gòu)造一個(gè)組合模型,原式左端為m個(gè)元素中?。顐€(gè)的組合數(shù)。原式右端可看成是同一問(wèn)題的另一種算法:把滿足條件的組合分為兩類(lèi),一類(lèi)為不取某個(gè)元素a1,有Cnm-1種取法

8、;一類(lèi)為必?。幔庇校茫睿保恚狈N取法。由加法原理及解的唯一性,可知原式成立。又如,經(jīng)營(yíng)和開(kāi)拓市場(chǎng)時(shí),我們常常需要對(duì)市場(chǎng)進(jìn)行一些基本的數(shù)字統(tǒng)計(jì),通過(guò)建立數(shù)學(xué)模型進(jìn)行分析研究來(lái)駕馭和把握市場(chǎng)的實(shí)例也不少。這類(lèi)問(wèn)題的講解不僅能提高學(xué)生的智力和應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力,而且對(duì)提高學(xué)生的善于經(jīng)營(yíng)和開(kāi)拓市場(chǎng)的能力大有益處?!  ∷摹⒃跀?shù)學(xué)教學(xué)中培養(yǎng)學(xué)生團(tuán)隊(duì)精神   團(tuán)隊(duì)精神就是一種相互協(xié)作、相互配合的工作精神。數(shù)

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。