資源描述:
《畢業(yè)論文英文文獻翻譯》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、Des.CodesCryptogr.(2013)67:169-173DOI10.1007/sl0623-011-9592-z六人參與的超存取結(jié)構(gòu)的復(fù)雜性MotahharehGharahi?MassoudHadianDehkordi2011/18接收:九月修訂:29十一月2011十一月2011/29/接受:發(fā)表于:十二月201121◎施普林格科學(xué)
2、商業(yè)媒體,LLC2011摘要:在本文中,我們研究了確定參與者人數(shù)為6的復(fù)雜的5個超圖訪問結(jié)構(gòu)復(fù)雜性的精確值,這在Dijk的論文(DES的代碼cryptogr6:
3、143-169,1995)中仍然是一個開放問題。我們證明了這5個超圖每個訪問結(jié)構(gòu)的復(fù)雜性是等于7/4。關(guān)鍵詞:完美的秘密共享方案;復(fù)雜性;熵方法:學(xué)主題分類(2000)94A62-94A171引言秘密共享方案是一種方法,它允許一個秘密在一個集合P參加者進行共享,在這樣一種方式下,參與者的預(yù)定義的授權(quán)+集可以運用他們所掌握的份額重建秘密。這個秘密共享方案被稱為是完善秘密共享方案,如果非授權(quán)子集的參與者不能獲得關(guān)于秘密的任何信息。p是存取結(jié)構(gòu)r的所限定能夠重建這個秘密的所冇+集的集合,它應(yīng)該是單調(diào)的,即任何
4、包含這個集合的集合都是授權(quán)子集。存取結(jié)構(gòu)r的最小授權(quán)子集稱為極小授權(quán)子集,記為[門一。一個秘密共享方案的復(fù)雜性在于p中獲得份額最人的參與者的份額與任何其他參與者份額的比的大小。存取結(jié)構(gòu)r的復(fù)雜性,記為cr(r),被定義為存取結(jié)構(gòu)r的所冇秘密共享方案的復(fù)雜性的下確界。一?組參與者集合為p的圖存取結(jié)構(gòu)是包含基數(shù)只冇兩個最小授權(quán)+集的訪問結(jié)構(gòu),在對圖存取結(jié)構(gòu)的復(fù)雜性M題的討論上,已發(fā)表出多篇論文,例如[1—4,8—10]vanDijk研究了6人參與的112個圖存取結(jié)構(gòu)一共94例的復(fù)雜性,確定了復(fù)雜性的精確值.
5、[10]在木文中,我們考慮確定的圖訪M結(jié)構(gòu)r22,r4。,r42,r43和r61的復(fù)雜性的精確值的問題。這個問題在vanDijk’s的論文中沒有得到解決。在參考文獻[10]中,vanDijk論證了5/3€(7(廠)€9/5對于/=22,40,5/3€0"(廠.)€7/4對于MotahharehGharahi?MassoudHadianDehkordi2011/18接收:九月修訂:29十一月2011十一月2011/29/接受:發(fā)表于:十二月201121◎施普林格科學(xué)
6、商業(yè)媒體,LLC2011摘要:在本文中
7、,我們研究了確定參與者人數(shù)為6的復(fù)雜的5個超圖訪問結(jié)構(gòu)復(fù)雜性的精確值,這在Dijk的論文(DES的代碼cryptogr6:143-169,1995)中仍然是一個開放問題。我們證明了這5個超圖每個訪問結(jié)構(gòu)的復(fù)雜性是等于7/4。關(guān)鍵詞:完美的秘密共享方案;復(fù)雜性;熵方法:學(xué)主題分類(2000)94A62-94A171引言秘密共享方案是一種方法,它允許一個秘密在一個集合P參加者進行共享,在這樣一種方式下,參與者的預(yù)定義的授權(quán)+集可以運用他們所掌握的份額重建秘密。這個秘密共享方案被稱為是完善秘密共享方案,如果非
8、授權(quán)子集的參與者不能獲得關(guān)于秘密的任何信息。p是存取結(jié)構(gòu)r的所限定能夠重建這個秘密的所冇+集的集合,它應(yīng)該是單調(diào)的,即任何包含這個集合的集合都是授權(quán)子集。存取結(jié)構(gòu)r的最小授權(quán)子集稱為極小授權(quán)子集,記為[門一。一個秘密共享方案的復(fù)雜性在于p中獲得份額最人的參與者的份額與任何其他參與者份額的比的大小。存取結(jié)構(gòu)r的復(fù)雜性,記為cr(r),被定義為存取結(jié)構(gòu)r的所冇秘密共享方案的復(fù)雜性的下確界。一?組參與者集合為p的圖存取結(jié)構(gòu)是包含基數(shù)只冇兩個最小授權(quán)+集的訪問結(jié)構(gòu),在對圖存取結(jié)構(gòu)的復(fù)雜性M題的討論上,已發(fā)表出多
9、篇論文,例如[1—4,8—10]vanDijk研究了6人參與的112個圖存取結(jié)構(gòu)一共94例的復(fù)雜性,確定了復(fù)雜性的精確值.[10]在木文中,我們考慮確定的圖訪M結(jié)構(gòu)r22,r4。,r42,r43和r61的復(fù)雜性的精確值的問題。這個問題在vanDijk’s的論文中沒有得到解決。在參考文獻[10]中,vanDijk論證了5/3€(7(廠)€9/5對于/=22,40,5/3€0"(廠.)€7/4對于z=42,43,以及5/3S<7(r61)<2。隨后在文獻[9]中,Sun和Chen論證后將r22和r#的上界提
10、至到了7/4。將r61的上界提至了16/9。近期,Padr6和Vdzquez提出了圖存取結(jié)構(gòu)r4。,r42,r43和r6l的復(fù)雜性的下界為7/4,運用的是線性規(guī)劃的方法[7]。在本文屮,我們給出這些問題的簡單論證方法。我們的方法的主要新穎之處在于引用了一般的引理,這使得我們證明hand-checkable,并獨立于任何計算機計算。除此之外,通過使用這個引理,我們對存取結(jié)構(gòu)r22復(fù)雜性下界進行了改進,由5/3變成了7/4,并且在文獻[9]中得