資源描述:
《一類仿射非線性系統(tǒng)的最優(yōu)滑模跟蹤控制》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、OPTIMAI,SLIDINGMODETRACKINGCONTROLFORACLASSOFAFFD旺!NONLINEARSYSTEMSABSTRACTTheoptimaltrackingproblemhasbeenreceivedgreatgrowingattentionowingtoitswidepracticalapplications.Thelinearoptimaltrackingproblemcouldbesolvedbydirectlyusingthesolutionofoptimalregulationproblem.However
2、,thenonlinearoptimaltrackingproblemoftenleadstoanonlineartwo—pointboundary-valueproblem(TPBV)andananalyticalsolutiongenerallydoesnotexistexceptsomesimplestcases.Exactlinearization,whichisusuallyusedtorealizenonlinearsystemtransformation,couldavoidnonlinearTPBVproblemandeffect
3、ivelysimplifytheoptimalregulatordesign.Therealplantsinevitablycontainsystemuncertainty.Thismaydegradethedynamicperformanceoftheoptimalcontrollerwhichisusuallydesignedbasedonprecisemathematicalmodes,evenmakeitunstable.Theoutstandingadvantageofslidingmodecontrol(SMC)isthat。slid
4、ingmodecallprovidecompleterobustnesstosystemuncertainty.Therefore,SMCCanbeemployedtorobustifytheoptimalregulator,inordertoachievethe‘optimalinvariance’.Thedesignofoptimalslidingmodetrackingcontrollerisstudiedforaclassofaffinenonlinearsystemsinthisthesis.Themainworksaresummari
5、zedasfollows:1.Theoptimalslidingmodetrackingcontrolisstudiedforuncertainlinearsystems.Anaugmentedsystem,composedoftheoriginalsystemandtheexosystem,isconstructedtotransformtheoptimaloutputtrackingproblemintoanoptimalregulationproblem.Consideringsystemuncertainty,theoptimalslid
6、ingmanifoldisconstructed,basedontheoptimalcontrollawofnominalsystemoftheaugmentedsystem.Slidingmodesatisfiesrequirementofgivenoptimalperformanceeriterionandexhibitscompleterobustnesstosystemuncertainty.Areferenceinputobserverisconstructedtoguaranteethecontrollawphysicallyreal
7、izable.Simulationresultsillustratetheeffectivenessoftheproposedmethod.2.TheoptimalslidingmodetrackingcontrollerisdesignedforaclassofIIIuncertainnonlinearSingle-Input-Single-Output(SISO)systems,withre銜鋤cesl薩砒givenbyallexosystem.Firstlyfeedbacklinearizationisadoptedtotransfomlt
8、nenonlinearmodelintoallequivalentlinearone.Consideringt11ere衙%ceeXos