資源描述:
《基于模糊神經(jīng)網(wǎng)絡(luò)的智能優(yōu)化pid控制器研究》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、摘要基于模糊神經(jīng)網(wǎng)絡(luò)的智能優(yōu)化PID控制器研究PID控制算法簡(jiǎn)單、魯棒性好且規(guī)則容易理解,被廣泛應(yīng)用于工業(yè)過(guò)程控制中。但隨著工業(yè)生產(chǎn)的發(fā)展,對(duì)象越來(lái)越復(fù)雜,傳統(tǒng)PID控制的弊端日益暴露。模糊控制和神經(jīng)網(wǎng)絡(luò)均不依賴(lài)被控對(duì)象的數(shù)學(xué)模型,且具有較強(qiáng)的自適應(yīng)和自學(xué)習(xí)能力。針對(duì)復(fù)雜非線(xiàn)性對(duì)象,利用神經(jīng)網(wǎng)絡(luò)與模糊控制的優(yōu)點(diǎn),設(shè)計(jì)PID控制器的在線(xiàn)調(diào)整控制系統(tǒng),改善系統(tǒng)性能,無(wú)論在理論還是實(shí)踐上都將具有重要意義。本文在吸取傳統(tǒng)的經(jīng)典控制理論強(qiáng)大的分析能力基礎(chǔ)上,結(jié)合神經(jīng)網(wǎng)絡(luò)和模糊控制的特點(diǎn),將模糊神經(jīng)網(wǎng)絡(luò)控制與傳統(tǒng)PID控制相結(jié)合,明確了模糊神經(jīng)網(wǎng)絡(luò)對(duì)于解決傳統(tǒng)過(guò)程控制問(wèn)題的重要地位。設(shè)計(jì)了
2、一種基于模糊神經(jīng)網(wǎng)絡(luò)的智能優(yōu)化PID控制器,采用遺傳算法優(yōu)化模糊神經(jīng)網(wǎng)絡(luò)的參數(shù),包括隸屬度函數(shù)均值co、標(biāo)準(zhǔn)差bo及網(wǎng)絡(luò)輸出層所對(duì)應(yīng)的連接權(quán)系數(shù)Wii,在線(xiàn)更新PID參數(shù)。文中給出了基于模糊神經(jīng)網(wǎng)絡(luò)智能優(yōu)化PID控制系統(tǒng)的結(jié)構(gòu)及控制器的一般算法,并討論了利用VC語(yǔ)言實(shí)現(xiàn)控制器軟件化的方法。同時(shí)對(duì)TE過(guò)程,利用該模糊神經(jīng)網(wǎng)絡(luò)智能優(yōu)化PID控制器對(duì)其進(jìn)行了仿真控制研究,仿真結(jié)果表明基于模糊神經(jīng)網(wǎng)絡(luò)的智能優(yōu)化PID控制器具有良好的控制效果,有著廣闊的發(fā)展前景。北京化T大學(xué)碩:卜學(xué)位論文關(guān)鍵詞:PID控制,模糊神經(jīng)網(wǎng)絡(luò),遺傳算法,智能控制ABSTRACTINTELLIGENTOPTIM
3、IZATIoNPIDCONTROLLERBASEDoNFUZZYNEURALNETWORKSThePIDcontrolalgorithmissimpleinstructure,stronginrobustness,andcanbeunderstoodeasily.Ithasbeenwidelyusedinindustrialprocesscontr01.However,theobjectsbecomemoreandmorecomplexwiththedevelopmentofindustrialproems,andthedrawbacksofthetraditionalPIDc
4、ontrolareincreasinglyexposed.TheFuzzyControlandNeuralNetworksdonotrelayonthemathematicmodelofcontrolledobjects,andhavestronggerabilityofself-adaptationandself-study.Aimingatthecomplexnon-linerobjects,itissignificanttoemploytheexcellenceofNeuralNetworksandFuzzyControltodesigntheon-lineadjusti
5、ngcontrolsystemofPIDcontroltoimprovethesystemperformancebomintheoryandpractice.ThisthesiscombinedthecharacteristicofNeuralNetworksandFuzzyControlonthebasisofpowerfulanalysisabilityoftraditionalclassiccontroltheory.FirstlyitcombinedtheFuzzyNeuralNetworksControlandtraditionalPIDcontrol,determi
6、nedtheimportantstateofFuzzyNeuralNetworksresolvingthetraditionalprocesscontrol,北京化工人學(xué)碩J:學(xué)位論文designedanintelligentoptimizationPIDcontrollerbasedonFuzzyNeuralNetworkswhichusedGeneticAlgorithmtooptimizetheFuzzyNeuralNetworksparametersincludingthemembershipfunctionmean,standarddevimion,connectio
7、nweightswijcorrespondingtothenetworkoutputlayer,andon-lineupdatedPIDparameters.ThenifgavethestructureofintelligentoptimizationPIDcontrolsystemandthegeneralalgorithmofcontrollerbasedontheFuzzyNeuralNetworks,anddiscussedthemethodofusingVCtorealizethe