Bayesian inference and the parametric bootstrap Efron 2013 .pdf

Bayesian inference and the parametric bootstrap Efron 2013 .pdf

ID:34747326

大?。?37.26 KB

頁數(shù):27頁

時(shí)間:2019-03-10

Bayesian inference and the parametric bootstrap Efron 2013 .pdf_第1頁
Bayesian inference and the parametric bootstrap Efron 2013 .pdf_第2頁
Bayesian inference and the parametric bootstrap Efron 2013 .pdf_第3頁
Bayesian inference and the parametric bootstrap Efron 2013 .pdf_第4頁
Bayesian inference and the parametric bootstrap Efron 2013 .pdf_第5頁
資源描述:

《Bayesian inference and the parametric bootstrap Efron 2013 .pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、TheAnnalsofAppliedStatistics2012,Vol.6,No.4,1971–1997DOI:10.1214/12-AOAS571cInstituteofMathematicalStatistics,2012BAYESIANINFERENCEANDTHEPARAMETRICBOOTSTRAPByBradleyEfron1StanfordUniversityTheparametricbootstrapcanbeusedforthee?cientcomputa-tionofBayesposteriordistributions.Imp

2、ortancesamplingformulastakeonaneasyformrelatingtothedevianceinexponentialfami-liesandareparticularlysimplestartingfromJe?reysinvariantprior.Becauseofthei.i.d.natureofbootstrapsampling,familiarformulasdescribethecomputationalaccuracyoftheBayesestimates.Besidescomputationalmethod

3、s,thetheoryprovidesaconnectionbetweenBayesianandfrequentistanalysis.E?cientalgorithmsforthefre-quentistaccuracyofBayesianinferencesaredevelopedanddemon-stratedinamodelselectionexample.1.Introduction.Thisarticleconcernstheuseoftheparametricboot-straptocarryoutBayesianinferenceca

4、lculations.Twomainpointsaremade:thatinthecomparativelylimitedsetofcaseswherebootstrapmeth-odsapply,theyo?erane?cientandcomputationallystraightforwardwaytocomputeposteriordistributionsandestimates,enjoyingsomeadvantagesoverMarkovchaintechniques;and,moreimportantly,thattheparamet

5、ricbootstraphelpsconnectBayesandfrequentistpointsofview.Thebasicideaissimpleandnotunfamiliar:thatthebootstrapisuse-fulforimportancesamplingcomputationofBayesposteriordistributions.AnimportantpaperbyNewtonandRaftery(1994)suggestedaversionofnonparametricbootstrappingforthispurpos

6、e.By“goingparametric”wecanmaketheBayes/bootstraprelationshipmoretransparent.ThislineofthoughthastheadvantageoflinkingratherthanseparatingfrequentistandBayesianpractices.arXiv:1301.2936v1[stat.AP]14Jan2013Section2introducesthemainideasintermsofanelementaryone-parame-terexamplean

7、dillustratesaconnectionbetweenJe?reysinvariantpriorden-sityandsecond-orderaccuratebootstrapcon?dencelimits.BothmethodsReceivedMay2012;revisedMay2012.1SupportedinpartbyNIHGrant8R01EB002784andbyNSFGrantDMS-08-04324/12-08787.Keywordsandphrases.Je?reysprior,exponentialfamilies,devi

8、ance,generalizedlin-earmodels.Thisisanelectronicreprin

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。