Bayesian Inference

Bayesian Inference

ID:40351508

大小:386.75 KB

頁數(shù):7頁

時間:2019-07-31

Bayesian Inference_第1頁
Bayesian Inference_第2頁
Bayesian Inference_第3頁
Bayesian Inference_第4頁
Bayesian Inference_第5頁
資源描述:

《Bayesian Inference》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學術(shù)論文-天天文庫。

1、BayesianInferenceThepurposeofthisdocumentistoreviewbeliefnetworksandnaiveBayesclassifiers.DefinitionsfromProbability:Beliefnetworks:NaiveBayesClassifiers:AdvantagesandDisadvantagesofNaiveBayesClassifiers:Attheendoflesson9,CharlesintroducestheBayesoptimalclassifier.Althoughthisisthebestperfor

2、mingclassificationmodelforagivenhypothesisspace,datasetandaprioriknowledge,theBayesoptimalclassifieriscomputationallyverycostly.ThisisbecausetheposteriorprobabilityP(h

3、D)mustbecomputedforeachhypothesish∈HandcombinedwiththepredictionP(v

4、h)beforevMAPcanbecomputed.Inlesson10,MichaeldiscussesBay

5、esianinference.TheendgoalofthislessonistointroduceanalternativeclassificationmodeltotheoptimalBayesclassifier:thenaiveBayesclassifier.ThismodelismuchmorecomputationallyefficientthanoptimalBayesclassification,andundercertainconditionsithasperformance1comparabletoneuralnetworksanddecisiontrees

6、.NaiveBayesclassifiersrepresentaspecialcaseofclassifiersderivedfrombeliefnetworksgraphicalmodelswhichrepresentasetofrandom2variablesandtheirconditionaldependencies.InthesenoteswereviewbeliefnetworksandthespecialcaseofnaiveBayesclassifiers,alongwithsomedefinitionsfromprobability.Definitionsfr

7、omProbability:Inthissectionwerecallafewdefinitionsfromprobabilitythatwewillneedmovingforward.FeelfreetoskipthissectionifyouarefamiliarwithconditionalprobabilityandBayes’theorem.1Mitchell,TomM."Machinelearning.1997."BurrRidge,IL:McGrawHill45(1997).2"BayesiannetworkWikipedia,thefreeencyclopedi

8、a."2003.9May.2014Copyright?2014Udacity,Inc.AllRightsReserved.WesaythatXisconditionallyindependentofYgivenZifforallvalues(xi,yj,zk)wehaveP(X=xi

9、Y=yj,Z=zk)=P(X=xi

10、Z=zk).Writingoutalldefinitions,weseethatitisequivalenttosaythatforallvalues(xi,yj,zk

11、)wehaveP(X=xi,Y=yj

12、Z=zk)=P(X=xi

13、Z=zk)P(Y=yj

14、Z=zk).Wewillalsorecallthefollowinginferencingrules:Theproductrule(aka,thechainrule):P(X,Y)=P(X

15、Y)P(Y)=P(Y

16、X)P(X)Itishelpfultonotethatthisrulealsohasthemoregeneralform:P(X1,...,Xn)=P(X1

17、X2,...,Xn)P(X2

18、X3,.

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。