資源描述:
《對(duì)稱性在積分計(jì)算中應(yīng)用》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、.畢業(yè)設(shè)計(jì)(論文)題目:對(duì)稱性在積分計(jì)算中應(yīng)用學(xué)院:數(shù)理學(xué)院專業(yè)名稱:信息與計(jì)算科學(xué)學(xué)號(hào):0741210102學(xué)生姓名:鮑品指導(dǎo)教師:張曉燕2011年5月20日...對(duì)稱性在積分計(jì)算中的應(yīng)用摘要對(duì)稱性的應(yīng)用很廣泛,尤其在數(shù)學(xué),物理學(xué),化學(xué)等方面都有體現(xiàn)。本論文主要是探討一下對(duì)稱性在積分計(jì)算中的應(yīng)用。積分在微積分學(xué)中既是重點(diǎn)又是難點(diǎn),特別是在解決積分計(jì)算問(wèn)題上,方法比較靈活。常見(jiàn)的積分方法有換元法和分部積分法,這些方法在解決一般的問(wèn)題上還是奏效的,但是對(duì)于復(fù)雜的微積分計(jì)算和證明問(wèn)題就顯得有些心有余而力不足。假如我們稍仔細(xì)地觀察題目,很多時(shí)候我們會(huì)
2、發(fā)現(xiàn)積分區(qū)域或被積函數(shù)具有某種對(duì)稱性。如果我們將對(duì)稱性巧妙地應(yīng)用到解決這類問(wèn)題中去,不僅簡(jiǎn)化了計(jì)算過(guò)程而且還節(jié)省計(jì)算時(shí)間。利用對(duì)稱性解題方法比較靈活也十分重要。接下來(lái)本論文將從定積分,重積分,曲線積分以及曲面積分四大方面入手,深入探討對(duì)稱性在積分計(jì)算中的應(yīng)用。最后分析利用對(duì)稱性解題的條件與優(yōu)勢(shì),總結(jié)出應(yīng)用相關(guān)性質(zhì)解題時(shí)要注意哪些方面。關(guān)鍵詞定積分,重積分,曲線積分,曲面積分,對(duì)稱性,奇偶性...AbstractTheapplicationofsymmetryisverywidespread,particularlyinmathematics,p
3、hysics,chemistryandotheraspectsofembodied.Thispaperistoexplorethesymmetryintheintegralcalculation.Integralcalculusisdifficultinboththefocus,especiallyinsolvingtheproblemofintegralcalculation,themethodmoreflexible.Thecommonintegralmethodarethesubstitutionofvariablesandtheinte
4、grationbyparts.Thesemethodsareeffectiveinthesolutiongeneralquestion,butappearregardingthecomplexcalculuscomputationandtheproofquestionsomewhathasmoredesirethanenergy.Ifwecarefullyobservethesubjectalittle,usuallywewillfindregionalintegrationorproductfunctionhasasymmetry.Ifwea
5、ppliedthesymmetryskillfullytosolvesuchproblems,thisnotonlysimplifiesthecalculationprocessbutalsosavecomputingtime.Moreflexibleuseofproblem-solvingapproachsymmetryisalsoimportant,Thenthepaperwillbeintegral,doubleintegral,curveandsurfaceintegralsfourpointsinabidtofurtherinvest
6、igatethesymmetryintheintegralcalculation.Finally,wesolveproblemsbyanalyzingthesymmetryoftheconditionsofuseandadvantages,summedupthenatureofproblemsolvingapplicationrelatedtotheattentionofwhat.Keywordsdefiniteintegral,heavyintegral,curvilinearintegral,surfaceintegral,symmetry
7、,parity...目錄1、緒論…………………………………………………………………………………11.1研究背景………………………………………………………………………11.2研究意義………………………………………………………………………11.3研究的思路及結(jié)構(gòu)的安排……………………………………………………22、對(duì)稱性在定積分計(jì)算中的應(yīng)用……………………………………………………23、對(duì)稱性在重積分計(jì)算中的應(yīng)用……………………………………………………33.1二重積分計(jì)算…………………………………………………………………33.2三重積分計(jì)算………………
8、…………………………………………………64、對(duì)稱性在曲線積分計(jì)算中的應(yīng)用…………………………………………………94.1第一型曲線積分計(jì)算…………………