資源描述:
《培養(yǎng)學生思維鼓勵學生創(chuàng)新》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在教育資源-天天文庫。
1、培養(yǎng)學生思維鼓勵學生創(chuàng)新————數(shù)學中學生發(fā)散思維的培養(yǎng)李家莊中學趙晨虹發(fā)散思維是不依常規(guī),尋求變異,對給出的材料、信息從不同角度,向不同方向,用不同方法或途徑進行分析和解決問題的一種思維方式。長期以來,小學數(shù)學教學以集中思維為主要思維方式,課本上的題目和材料的呈現(xiàn)過程大都循著一個模式,學生習慣于按照書上寫的與教師教的方式去思考問題,用符合常規(guī)的思路和方法解決問題,這對于基礎知識、基本技能的掌握是必要的,但對于小學生學習數(shù)學興趣的激發(fā)、智力能力的發(fā)展,特別是創(chuàng)造性思維的發(fā)展,顯然是不夠的。而發(fā)散思維卻
2、正好反映了創(chuàng)造性思維“盡快聯(lián)想,盡多作出假設和提出多種解決問題方案”的特點,因而成為創(chuàng)造性思維的一種主要形式。在小學數(shù)學教學的過程中,在培養(yǎng)學生初步的邏輯思維能力的同時,也要有意識地培養(yǎng)學生的發(fā)散思維能力。一、在誘導樂于求異的心理傾向中,培養(yǎng)學生的發(fā)散思維能力。贊可夫說過:“凡是沒有發(fā)自內(nèi)心求知欲和興趣的東西,是很容易從記憶中揮發(fā)掉的”。贊可夫這句話說明了發(fā)散思維能力的形成,需要以樂于求異的心理傾向作為一種重要的內(nèi)驅力。教師妥善于選擇具體題例,創(chuàng)設問題情境,精細地誘導學生的求異意識。對于學生在思維過程
3、中時不時地出現(xiàn)的求異因素要及時予以肯定和熱情表揚,使學生真切體驗到自己求異成果的價值。對于學生欲尋異解而不能時,教師則要細心點撥,潛心誘導,幫助他們獲得成功,使學生漸漸生成自覺的求異意識,并日漸發(fā)展為穩(wěn)定的心理傾向,在面臨具體問題時,就會能動地作出“還有另解嗎?”“試試看,再從另一個角度分析一下!”的求異思考。事實證明,也只有在這種心理傾向驅使下,那些相關的基礎知識、解題經(jīng)驗才會處于特別活躍的狀態(tài),也才可能對題中數(shù)量作出各種不同形式的重組,逐步形成發(fā)散思維能力。二、在誘導變通中,培養(yǎng)學生的發(fā)散思維能力
4、。變通,是發(fā)散思維的顯著標志。要對問題實行變通,只有在擺脫習慣性思考方式的束縛,不受固定模式的制約以后才能實現(xiàn)。因此,在學生較好地掌握了一般方法后,要注意誘導學生離開原有思維軌道,從多方面思考問題,進行思維變通。當學生思維閉塞時,教師要善于調(diào)度原型幫助學生接通與有關舊知識和解題經(jīng)驗的聯(lián)系,作出轉換、假設、化歸、逆反等變通,產(chǎn)生多種解決問題的設想。如:對于下面的應用題:王師傅做一批零件,8天做了這批零件的2/5,這樣,剩下的工作還要幾天可以完成?學生一般都能根據(jù)題意作出(1-2/5)÷(2/5÷8)的習
5、慣解答。此時,教師可作如下誘導:教師誘導性提問,學生求異性解答:①完成這批零件需要多少天8÷2/5-8或8÷2/5×(1-2/5)②已做零件數(shù)是剩下零件數(shù)2/5÷(1一2/5)的幾分之幾?③剩下零件數(shù)是已做零件數(shù)(1-2/5)÷2/5的幾倍?④能從題中數(shù)量間找出相等方程解法(略)關系嗎?⑤從題中幾種量中能判斷出比例解法(略)比例關系嗎?通過這些誘導,能使學生自覺地從一個思維過程轉換到另一個思維過程,逐步形成在題中數(shù)量間自由往返調(diào)節(jié)的變通能力,這對于培養(yǎng)學生的發(fā)散思維是極為有益的。三、在鼓勵獨創(chuàng)中,培養(yǎng)
6、學生的發(fā)散思維能力。在分析和解決問題的過程中,學生能別出心裁地提出新異的想法和解法,這是思維獨創(chuàng)性的表現(xiàn)。盡管小學生的獨創(chuàng)從總體上看是處于低層次的,但它卻蘊育著未來的大發(fā)明、大創(chuàng)造,教師應滿腔熱情地鼓勵他們別出心裁地思考問題,大膽地提出與眾不同的意見與質疑,獨辟蹊徑地解決問題,這樣才能使學生思維從求異、發(fā)散向創(chuàng)新推進。如:“某玩具廠生產(chǎn)一批兒童玩具,原計劃每天生產(chǎn)60件,7天完成任務,實際只用6天就全部完成了。實際每天比原計劃多生產(chǎn)多少件玩具?”一題時,照常規(guī)解法,先求出總任務有多少件,實際每天生產(chǎn)多
7、少件,然后求出實際每天比原計劃多生產(chǎn)多少件,列式為:60×7÷6-60=10(件)。而有一個學生卻說:“只須60÷6就行了”。他理由是:“這一天的任務要在6天內(nèi)完成所以要多做10件。”從他的回答中,可以看出他的思路是跳躍的,省略了許多分析的步驟。他是這樣想的:7天任務6天完成,時間提前了1天,自然這一天的任務(60件)也必須分配在6天內(nèi)完成,所以,同樣得60÷6=10,就是實際每天比計劃多做的件數(shù)了。毫無疑問,這種獨創(chuàng)性應該給予鼓勵。獨創(chuàng)往往蘊含于求異與發(fā)散之中,經(jīng)常誘導學生思維發(fā)散,才有可能出現(xiàn)超出
8、常規(guī)的獨創(chuàng);反之,又豐富了發(fā)散思維,促使思維不斷地向橫向與縱向發(fā)散。四、在多種形式的訓練中,培養(yǎng)學生的發(fā)散思維能力。在小學數(shù)學教學過程中,教師可結合教學內(nèi)容和學生的實際情況,采取多種形式的訓練,培養(yǎng)學生思維的敏捷性和靈活性,以達到誘導學生思維發(fā)散,培養(yǎng)發(fā)散思維能力的目的。1.一題多變。對題中的條件、問題、情節(jié)作各種擴縮、順逆、對比或敘述形式的變化,讓學生在各種變化了的情境中,從各種不同角度認識數(shù)量關系。如,有一批零件,由甲單獨做需要12小時,乙單獨做需要