有限元方法在二維散射問題中的應(yīng)用

有限元方法在二維散射問題中的應(yīng)用

ID:37113668

大?。?.41 MB

頁數(shù):61頁

時間:2019-05-17

有限元方法在二維散射問題中的應(yīng)用_第1頁
有限元方法在二維散射問題中的應(yīng)用_第2頁
有限元方法在二維散射問題中的應(yīng)用_第3頁
有限元方法在二維散射問題中的應(yīng)用_第4頁
有限元方法在二維散射問題中的應(yīng)用_第5頁
資源描述:

《有限元方法在二維散射問題中的應(yīng)用》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。

1、摘要有限元是計算電磁學(xué)的主流方法之一,對復(fù)雜結(jié)構(gòu)和非均勻介質(zhì)問題有很強(qiáng)的描述能力。在開域電磁散射問題中,有限元需要用虛擬邊界截斷無限大空間,本文用完全匹配層作為主要的開域散射邊界條件,對二維散射問題進(jìn)行研究。對比了吸收邊界條件與共性匹配層的吸收性能,并對后者的使用條件及參數(shù)設(shè)置進(jìn)行了深入地探討。文中幾個典型散射體的計算結(jié)果與其他文獻(xiàn)的對照表明了這種方法的有效性和準(zhǔn)確性。關(guān)鍵詞有限元、共形匹配層、電磁散射AbstractTheFiniteElementMethod(FEM)isoneofthemajornumericalmethodsincomputationalelectromagnet

2、ics.Duetoitsversatilityandflexibility,theFEMiscapableofmodelingcomplicatedstructuresaswellasinhomogeneousmaterials.Whensolvingelectromagnetic(EM)scatteringproblemwiththeFEM,theinfiniteregionexteriortothescatterermustbetruncatedbyafictitiousboundary.Formostapplicationsinthispaper,thistruncationbot

3、mdary--thePerfectlyMatchedLayer(PML)isadoptedfortheanalysisoftwodimensionalscatteringproblem.WecomparetheabsorbingabilitybetweenAbsorbingBoundaryCondition(ABC)andPerfectlyMatchedLayer(PML),andwealsodiscussdeeplyontheapplicationconditionandparameterseRingofPML.Severalexamplesareanalyzed,theresults

4、comparedtothoseobtainedbyotherauthorsshowtheandvalidityaccuracyofthismethod.KeyWordsFEM,PML,Electromagneticsscattering西北工業(yè)大學(xué)碩士學(xué)位論文第一章緒論§1.1電磁場有限元理論的發(fā)展有限元建立了一條連續(xù)系統(tǒng)離散逼近的自然途徑,也許這就是有限元方法最重要的特性11】。到目前為止,作為一種十分有效的數(shù)值算法,有限元法已廣泛的應(yīng)用于各類工程技術(shù)領(lǐng)域,例如流體力學(xué)、空氣動力學(xué)、結(jié)構(gòu)應(yīng)力、應(yīng)變分析、以及各種場變量——溫度、壓力、電磁場的計算等等。本節(jié)主要介紹有限元理論的一個分支,電

5、磁學(xué)有限元理論的發(fā)展。1943年,Courant的論文中首次明確地出現(xiàn)了有限元的思想——最小位能原理及分片插值的離散形式。然而許多學(xué)者認(rèn)為,有限元初期最重要的貢獻(xiàn)應(yīng)來自于結(jié)構(gòu)工程師l“,他們根據(jù)工作需要提出許多啟發(fā)性的構(gòu)想并付諸實踐。1953年,工程師們首次【3J用數(shù)字計算機(jī)實現(xiàn)了有限元剛度矩陣的求解。1960年,有限元的名稱[41正式出現(xiàn)。六十年代中期,數(shù)值分析學(xué)家認(rèn)識到有限元思想的重要性,將偏微分方程理論、泛函分析、逼近論等引入有限元的理論體系,建立了有限元方法的數(shù)學(xué)基礎(chǔ)。自此,有限元開始在工程計算中得到廣泛應(yīng)用。直至成為某些學(xué)科數(shù)值算法的支柱。1969年,P.P.Silvester

6、有關(guān)波導(dǎo)模求解的文章是一個里程碑,標(biāo)志著電磁學(xué)有限元方法的出現(xiàn)。不久,有限元被用于求解電機(jī)磁場、靜電場、波導(dǎo)本征值、渦流場、散射與輻射場等等,涉及電磁學(xué)的各個領(lǐng)域。有關(guān)電磁學(xué)有限元方法的論文數(shù)量逐年遞增【“,六十年代末僅十幾篇,七十年代末達(dá)到100篇左右,八十年代末已接近1000篇;到九十年代,有限元已經(jīng)同矩量法,時域有限差分法共同構(gòu)成計算電磁學(xué)的三大主流算法。許多商業(yè)有限元軟件也包含了電磁場訓(xùn)’算功能,例盤nMARC、ANSOFT、ANSYSl6】等,專為天線,微波器件設(shè)計‘服務(wù)的有限元軟件也開始出現(xiàn)。大量利.技文獻(xiàn)與商業(yè)化軟件的出現(xiàn)表明,在電磁學(xué)相關(guān)領(lǐng)域,有限元理滄已經(jīng)趨向成熟,然而

7、有限元方法t分適用于閉域問題的求解,對于散射等西北工業(yè)大學(xué)碩士學(xué)位論文第一章壹苦論開域問題則較為困難,三十年來這個領(lǐng)域新的方法層出不窮,但是一直未發(fā)展到接近工程應(yīng)用的水平。顯然,這是一個廣闊而復(fù)雜,值得深入研究的領(lǐng)域。§1.2有限元理論在開域散射問題中的應(yīng)用有限元求解電磁散射問題的困難之處在于,有限元是一種區(qū)域性方法,受計算機(jī)存儲空間和運(yùn)算速度的限制;而電磁散射是一個開域問題,有限元方法不可能將離散域擴(kuò)展到無限空間,這就需要一個特殊

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。