資源描述:
《聯(lián)立方程模型的識別》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、§6.2聯(lián)立方程模型的識別一、識別的概念二、結(jié)構(gòu)式識別條件三、簡化式識別條件四、經(jīng)驗方法一、識別的概念方程的識別模型的識別⒈為什么要對模型進行識別?消費方程是包含C、Y和常數(shù)項的直接線性方程。投資方程和國內(nèi)生產(chǎn)總值方程的某種線性組合(消去I)所構(gòu)成的新方程也是包含C、Y和常數(shù)項的直接線性方程。如果利用C、Y的樣本觀測值并進行參數(shù)估計后,很難判斷得到的是消費方程的參數(shù)估計量還是新組合方程的參數(shù)估計量。只能認為原模型中的消費方程是不可估計的。這種情況被稱為不可識別。只有可以識別的方程才是可以估計的。事實上,聯(lián)立方程模
2、型是由多個方程構(gòu)成的,對方程之間的關(guān)系有嚴格的要求,否則模型就可能無法估計。所以在模型估計之前,首先要判斷其是否可以估計?、卜匠套R別的定義—“如果聯(lián)立方程模型中某個結(jié)構(gòu)方程不具有確定的統(tǒng)計形式,則稱該方程為不可識別。”—“如果聯(lián)立方程模型中某些方程的線性組合可以構(gòu)成與某一個方程相同的統(tǒng)計形式,則稱該方程為不可識別?!薄案鶕?jù)參數(shù)關(guān)系體系,在已知簡化式參數(shù)估計值時,如果不能得到聯(lián)立方程模型中某個結(jié)構(gòu)方程的確定的結(jié)構(gòu)參數(shù)估計值,則稱該方程為不可識別?!币允欠窬哂写_定的統(tǒng)計形式作為識別的基本定義。(1)什么是“統(tǒng)計形式
3、”?——變量和方程關(guān)系式(2)什么是“具有確定的統(tǒng)計形式”?——模型系統(tǒng)中其他方程或所有方程的任意線性組合所構(gòu)成的新的方程都不具有這種統(tǒng)計形式⒊模型的識別上述識別的定義是針對結(jié)構(gòu)方程而言的。模型中每個需要估計其參數(shù)的隨機方程都存在識別問題。如果一個模型中的所有隨機方程都是可以識別的,則認為該聯(lián)立方程模型系統(tǒng)是可以識別的。反過來,如果一個模型系統(tǒng)中存在一個不可識別的隨機方程,則認為該聯(lián)立方程模型系統(tǒng)是不可以識別的。恒等方程由于不存在參數(shù)估計問題,所以也不存在識別問題。但是,在判斷隨機方程的識別性問題時,應(yīng)該將恒等方
4、程考慮在內(nèi)。⒋恰好識別與過度識別如果某一個隨機方程具有一組參數(shù)估計量,稱其為恰好識別(JustIdentification);如果某一個隨機方程具有多組參數(shù)估計量,稱其為過度識別(Overidentification)。二、從定義出發(fā)識別模型【例題1】第2與第3個方程的線性組合得到的新方程具有與消費方程相同的統(tǒng)計形式,所以消費方程也是不可識別的。第1與第3個方程的線性組合得到的新方程具有與投資方程相同的統(tǒng)計形式,所以投資方程也是不可識別的。于是,該模型系統(tǒng)不可識別。參數(shù)關(guān)系體系由3個方程組成,剔除一個矛盾方程,2
5、個方程不能求得4個結(jié)構(gòu)參數(shù)的確定值。也證明消費方程與投資方程都是不可識別的。消費方程是可以識別的,因為任何方程的線性組合都不能構(gòu)成與它相同的統(tǒng)計形式。投資方程仍然是不可識別的,因為第1、第2與第3個方程的線性組合(消去C)構(gòu)成與它相同的統(tǒng)計形式。于是,該模型系統(tǒng)仍然不可識別。參數(shù)關(guān)系體系由6個方程組成,剔除2個矛盾方程,由4個方程是不能求得所有5個結(jié)構(gòu)參數(shù)的確定估計值??梢缘玫较M方程參數(shù)的確定值,證明消費方程可以識別;因為只能得到它的一組確定值,所以消費方程是恰好識別的方程。投資方程都是不可識別的?!纠}2】在
6、投資方程中增加了1個變量消費方程仍然是可以識別的,因為任何方程的線性組合都不能構(gòu)成與它相同的統(tǒng)計形式。投資方程也是可以識別的,因為任何方程的線性組合都不能構(gòu)成與它相同的統(tǒng)計形式。于是,該模型系統(tǒng)是可以識別的。參數(shù)關(guān)系體系由9個方程組成,剔除3個矛盾方程,在已知簡化式參數(shù)估計值時,由6個方程能夠求得所有6個結(jié)構(gòu)參數(shù)的確定估計值。而且,只能得到所有6個結(jié)構(gòu)參數(shù)的一組確定值,所以消費方程和投資方程都是恰好識別的方程?!纠}3】在消費方程中增加了1個變量消費方程和投資方程仍然是可以識別的,因為任何方程的線性組合都不能構(gòu)成
7、與它們相同的統(tǒng)計形式。于是,該模型系統(tǒng)是可以識別的。參數(shù)關(guān)系體系由12個方程組成,剔除4個矛盾方程,在已知簡化式參數(shù)估計值時,由8個方程能夠求得所有7個結(jié)構(gòu)參數(shù)的確定估計值。但是,求解結(jié)果表明,對于消費方程的參數(shù),只能得到一組確定值,所以消費方程是恰好識別的方程;而對于投資方程的參數(shù),能夠得到多組確定值,所以投資方程是過度識別的方程。【例題4】注意:在求解線性代數(shù)方程組時,如果方程數(shù)目大于未知數(shù)數(shù)目,被認為無解;如果方程數(shù)目小于未知數(shù)數(shù)目,被認為有無窮多解。但是在這里,無窮多解意味著沒有確定值,所以,如果參數(shù)關(guān)系
8、體系中有效方程數(shù)目小于未知結(jié)構(gòu)參數(shù)估計量數(shù)目,被認為不可識別。如果參數(shù)關(guān)系體系中有效方程數(shù)目大于未知結(jié)構(gòu)參數(shù)估計量數(shù)目,那么每次從中選擇與未知結(jié)構(gòu)參數(shù)估計量數(shù)目相等的方程數(shù),可以解得一組結(jié)構(gòu)參數(shù)估計值,換一組方程,又可以解得一組結(jié)構(gòu)參數(shù)估計值,這樣就可以得到多組結(jié)構(gòu)參數(shù)估計值,被認為可以識別,但不是恰好識別,而是過度識別。⒌如何修改模型使不可識別的方程變成可以識別或者在其