《反證法》課件

《反證法》課件

ID:37898873

大小:912.00 KB

頁數(shù):33頁

時間:2019-06-02

《反證法》課件_第1頁
《反證法》課件_第2頁
《反證法》課件_第3頁
《反證法》課件_第4頁
《反證法》課件_第5頁
資源描述:

《《反證法》課件》由會員上傳分享,免費在線閱讀,更多相關內容在教育資源-天天文庫。

1、§4.4反證法路邊苦李王戎7歲時,與小伙伴們外出游玩,看到路邊的李樹上結滿了果子.小伙伴們紛紛去摘取果子,只有王戎站在原地不動…王戎回答說:“樹在道邊而多子,此必苦李.”小伙伴摘取一個嘗了一下果然是苦李.王戎是怎樣知道李子是苦的呢?他運用了怎樣的推理方法?情境導入假設李子不是苦的,即李子是甜的,那么這長在人來人往的大路邊的李子一定會被過路人摘去解渴。那么,樹上的李子不會這么多。這與事實矛盾。說明李子是甜的這個假設是錯的所以,李子是苦的思考:王戎的推理方法是:假設李子不苦,則因樹在“道”邊,李子早就被別人

2、采摘,這與“多子”產生矛盾.所以假設不成立,李為苦李.假設“李子甜”樹在道邊則李子少與已知條件“樹在道邊而多子”產生矛盾假設“李子甜”不成立所以“樹在道邊而多子,此必為苦李”是正確的王戎推理過程是:王戎的這種推理方法實際上運用了數(shù)學證明的一種重要方法-----------反證法。導學提綱:帶著以下問題熟讀課本第114---117頁內容。1、反證法的實質是什么?2、用反證法證明一個命題的一般步驟是什么?3、試用反證法證明:(1)、一個班級有15名同學,則至少有兩名同學的生日月份相同。合作探究-以小組為單位

3、,交流學習心得。歸納匯報,展示成果。1、反證法的實質是什么?定義:在證明一個命題時,有時先假設命題不成立,從這樣的假設出發(fā),經過推理得出和已知條件矛盾,或者與定義,公理,定理等矛盾,從而得出假設命題不成立是錯誤的,即所求證的命題正確。這種證明方法叫做反證法。歸納匯報,展示成果。1、反證法的實質是什么?肯定條件,否定結論2、用反證法證明一個命題的一般步驟是什么?反證法的步驟一、提出假設(假設結論的反面成立)二、推理論證三、得出矛盾(推出與基本事實,已證定理,定義或已知條件相矛盾)四、原結論成立3、試用反證

4、法證明:(1)、若一個班級有15名同學,則至少有兩名同學的生日月份相同。歸納匯報,展示成果。1、反證法的實質是什么?肯定條件,否定結論2、用反證法證明一個命題的一般步驟是什么?例:求證:兩條直線相交只有一個交點.已知:兩條相交直線l1與l2求證:l1與l2只有一個交點。證明:假設兩條相交直線l1與l2不止一個交點,不妨設有兩個交點A和B.則,過點A和B就有兩條直線l1與l2這與“兩點確定一條直線”的基本事實相矛盾.所以假設不成立.因此兩條直線相交只有一個交點。用反證法證明(填空):在三角形的內角中,至少

5、有一個角小于或等于60°已知:如圖,∠A,∠B,∠C是△ABC的內角求證:∠A,∠B,∠C中至少有一個角小于或等于60度證明假設△ABC中沒用一個內角小于或等于600,即∠A__60°,∠B__60°,∠C__60°則∠A+∠B+∠C﹥1800這于_________________這個定理矛盾所以假設命題______,所以,△ABC中至少有一個內角小于或等于600.﹥﹥﹥三角形的內角和等于180°不成立ABC相信自己行,你就行!1、寫出下列各結論的反面:(1)a//b(2)a≥0(3)b是正數(shù)(4)a⊥

6、b(5)至多有一個(6)至少有一個a<0b是0或負數(shù)a不垂直于ba不平行b一個也沒有至少有兩個合作探究二變式訓練1、“a<b”的反面應是()(A)a≠>b(B)a>b(C)a=b(D)a=b或a>b2、用反證法證明命題“三角形中最多有一個是直角”時,應如何假設?___________________________________D假設三角形中有兩個或三個角是直角試一試已知:如圖,直線a,b被直線c所截,∠1≠∠2求證:a∥b∴∠1=∠2(兩直線平行,同位角相等)這與已知的∠1≠∠2矛盾∴假設不成立證明

7、:假設結論不成立,則a∥b∴a∥b1、如圖,在△ABC中,若∠C是直角,那么∠B一定是銳角.你能用反證法證明以下命題嗎?延伸拓展證明:假設結論不成立,則∠B是_____或______.這與____________________________矛盾;當∠B是_____時,則______________這與____________________________矛盾;綜上所述,假設不成立.∴∠B一定是銳角.直角鈍角直角∠B+∠C=180°三角形的三個內角和等于180°鈍角∠B+∠C>180°三角形的三個內

8、角和等于180°當∠B是_____時,則_____________已知:如圖,在△ABC中,AB≠AC求證∠B≠∠C.2、求證:在一個三角形中,如果兩條邊不相等,那么他們所對的角也不相等。CBA證明:假設結論不成立,則∠B=∠C則有AB=AC這與已知中AB≠AC相矛盾所以假設不成立.所以原結論“∠B≠∠C”成立.3、求證:兩條直線被第三條直線所截,如果內錯角不相等,那么著兩條直線不平行。已知:如圖,直線a,b被直線c所截,∠1≠∠2求證:a

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現(xiàn)內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。